Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Former trainee Herbert says residential squatters may be a good thing

Work by Couper, Farley et al. shows impact of racial composition on neighborhood choice

Thompson details killings and shaping of official narrative in 1971 Attica prison uprising

More News

Highlights

Michigan ranked #12 on Business Insider's list of 50 best American colleges

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling

Publication Abstract

Chen, Q.X., Michael R. Elliott, and R.J. Little. 2010. "Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling." Survey Methodology, 36(1): 23-34.

We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. The advantages of the BPSP estimator over the Hajek (HK), Generalized Regression (GR), and parametric model-based prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model misspecification and influential observations in the sample.

Public Access Link

Browse | Search : All Pubs | Next