Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer and Edin's book ($2 a Day) cited in piece on political debate over plight of impoverished Americans

Eisenberg tracks factors affecting both mental health and athletic/academic performance among college athletes

Shapiro says Americans' low spending reflects "cruel lesson" about the dangers of debt

Highlights

Susan Murphy elected to the National Academy of Sciences

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

Next Brown Bag

PSC Brown Bags
will resume fall 2016

State-Based Estimates of Mammography Screening Rates Based on Information from Two Health Surveys

Publication Abstract

Davis, W.W., V.L. Parsons, D.W. Xie, N. Schenker, M. Town, Trivellore Raghunathan, and E.J. Feuer. 2010. "State-Based Estimates of Mammography Screening Rates Based on Information from Two Health Surveys." Public Health Reports, 125(4): 567-578.

Objectives. We compared national and state-based estimates for the prevalence of mammography screening from the National Health Interview Survey (NHIS), the Behavioral Risk Factor Surveillance System (BRFSS), and a model-based approach that combines information from the two surveys. Methods. At the state and national levels, we compared the three estimates of prevalence for two time periods (1997-1999 and 2000-2003) and the estimated difference between the periods. We included state-level covariates in the model-based approach through principal components. Results. The national mammography screening prevalence estimate based on the BRFSS was substantially larger than the NHIS estimate for both time periods. This difference may have been due to nonresponse and noncoverage biases, response mode (telephone vs. in-person) differences, or other factors. However, the estimated change between the two periods was similar for the two surveys. Consistent with the model assumptions, the model-based estimates were more similar to the NHIS estimates than to the BRFSS prevalence estimates. The state-level covariates (through the principal components) were shown to be related to the mammography prevalence with the expected positive relationship for socioeconomic status and urbanicity. In addition, several principal components were significantly related to the difference between NHIS and BRFSS telephone prevalence estimates. Conclusions. Model-based estimates, based on information from the two surveys, are useful tools in representing combined information about mammography prevalence estimates from the two surveys. The model-based approach adjusts for the possible nonresponse and noncoverage biases of the telephone survey while using the large BRFSS state sample size to increase precision.

PMCID: PMC2882608. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next