Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Burgard and Seelye find job insecurity linked to psychological distress among workers in later years

Former PSC trainee Jay Borchert parlays past incarceration and doctoral degree into pursuing better treatment of inmates

Inglehart says shaky job market for millennials has contributed to their disaffection

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

State-Based Estimates of Mammography Screening Rates Based on Information from Two Health Surveys

Publication Abstract

Davis, W.W., V.L. Parsons, D.W. Xie, N. Schenker, M. Town, Trivellore Raghunathan, and E.J. Feuer. 2010. "State-Based Estimates of Mammography Screening Rates Based on Information from Two Health Surveys." Public Health Reports, 125(4): 567-578.

Objectives. We compared national and state-based estimates for the prevalence of mammography screening from the National Health Interview Survey (NHIS), the Behavioral Risk Factor Surveillance System (BRFSS), and a model-based approach that combines information from the two surveys. Methods. At the state and national levels, we compared the three estimates of prevalence for two time periods (1997-1999 and 2000-2003) and the estimated difference between the periods. We included state-level covariates in the model-based approach through principal components. Results. The national mammography screening prevalence estimate based on the BRFSS was substantially larger than the NHIS estimate for both time periods. This difference may have been due to nonresponse and noncoverage biases, response mode (telephone vs. in-person) differences, or other factors. However, the estimated change between the two periods was similar for the two surveys. Consistent with the model assumptions, the model-based estimates were more similar to the NHIS estimates than to the BRFSS prevalence estimates. The state-level covariates (through the principal components) were shown to be related to the mammography prevalence with the expected positive relationship for socioeconomic status and urbanicity. In addition, several principal components were significantly related to the difference between NHIS and BRFSS telephone prevalence estimates. Conclusions. Model-based estimates, based on information from the two surveys, are useful tools in representing combined information about mammography prevalence estimates from the two surveys. The model-based approach adjusts for the possible nonresponse and noncoverage biases of the telephone survey while using the large BRFSS state sample size to increase precision.

PMCID: PMC2882608. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next