Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey says China is source country of most new U.S. immigrants

Rodriguez, Geronimus, Bound and Dorling find excess mortality among blacks influences key elections

Kruger says high concentration of local fast food outlets is risk factor for obesity


Cheng wins ASA Outstanding Graduate Student Paper Award

Hicken wins 2015 UROP Outstanding Research Mentor Award

U-M ranked #1 in Sociology of Population by USN&WR's "Best Graduate Schools"

PAA 2015 Annual Meeting: Preliminary program and list of UM participants

Next Brown Bag

Mon, May 18
Lois Verbrugge, Disability Experience & Measurement

A comparison of variance estimators for poststratification to estimated control totals

Archived Abstract of Former PSC Researcher

Dever, J.A., and Richard L. Valliant. 2010. "A comparison of variance estimators for poststratification to estimated control totals." Survey Methodology, 36(1): 45-56.

Calibration techniques, such as poststratification, use auxiliary information to improve the efficiency of survey estimates. The control totals, to which sample weights are poststratified (or calibrated), are assumed to be population values. Often, however, the controls are estimated from other surveys. Many researchers apply traditional poststratification variance estimators to situations where the control totals are estimated, thus assuming that any additional sampling variance associated with these controls is negligible. The goal of the research presented here is to evaluate variance estimators for stratified, multi-stage designs under estimated-control (EC) poststratification using design-unbiased controls. We compare the theoretical and empirical properties of linearization and jackknife variance estimators for a poststratified estimator of a population total. Illustrations are given of the effects on variances from different levels of precision in the estimated controls. Our research suggests (i) traditional variance estimators can seriously underestimate the theoretical variance, and (ii) two EC poststratification variance estimators can mitigate the negative bias.

Country of focus: United States of America.

Browse | Search : All Pubs | Next