Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer says drop child tax credit in favor of universal, direct investment in American children

Buchmueller breaks down partisan views on Obamacare

ISR's Conrad says mobile phone polling faces non-response bias

More News


Gonzalez, Alter, and Dinov win NSF "Big Data Spokes" award for neuroscience network

Post-doc Melanie Wasserman wins dissertation award from Upjohn Institute

ISR kicks off DE&I initiative with lunchtime presentation: Oct 13, noon, 1430 ISR Thompson

U-M ranked #4 in USN&WR's top public universities

More Highlights

Next Brown Bag

Mon, Oct 24 at noon:
Academic innovation & the global public research university, James Hilton

A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials

Publication Abstract

Li, Y., J.M. Taylor, and Michael R. Elliott. 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials." Biometrics, 66(2): 523-531.

A surrogate marker (5) is a variable that can be measured earlier and often more easily than the true endpoint (T) in a clinical trial. Most previous research has been devoted to developing surrogacy measures to quantify how well S Can replace T or examining the use of S in predicting the effect. of a (Z). However, the research often requires one to fit models for the distribution of T given S and Z. It is well known that such models do not have causal interpretations because the models condition on a postrandomization variable S. In this article: we directly model the relationship among T, S, and Z using a potential outcomes framework introduced by Frangakis and Rubin (2002, Biometrics 58, 21 29). We propose Bayesian estimation method to evaluate the causal probabilities associated with the cross-classification of the potential outcomes of S and T when S and T am both binary. We use a log-linear model to directly model the association between the potential outcomes of S and T through the odds ratios. The quantities derived from this approach always have causal interpretations. However, this causal model is not identifiable from the data without additional assumptions. To reduce the nonidentifiability problem and increase the precision of statistical inferences, we assume monotonicity and incorporate prior belief that is plausible in the surrogate context, by using prior distributions. We also explore Hie relationship among the surrogacy measures based on traditional models and this counterfactual model. The method is applied to the data from a glaucoma treatment study.

DOI:10.1111/j.1541-0420.2009.01303.x (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next