Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials

Publication Abstract

Li, Y., J.M. Taylor, and Michael R. Elliott. 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials." Biometrics, 66(2): 523-531.

A surrogate marker (5) is a variable that can be measured earlier and often more easily than the true endpoint (T) in a clinical trial. Most previous research has been devoted to developing surrogacy measures to quantify how well S Can replace T or examining the use of S in predicting the effect. of a (Z). However, the research often requires one to fit models for the distribution of T given S and Z. It is well known that such models do not have causal interpretations because the models condition on a postrandomization variable S. In this article: we directly model the relationship among T, S, and Z using a potential outcomes framework introduced by Frangakis and Rubin (2002, Biometrics 58, 21 29). We propose Bayesian estimation method to evaluate the causal probabilities associated with the cross-classification of the potential outcomes of S and T when S and T am both binary. We use a log-linear model to directly model the association between the potential outcomes of S and T through the odds ratios. The quantities derived from this approach always have causal interpretations. However, this causal model is not identifiable from the data without additional assumptions. To reduce the nonidentifiability problem and increase the precision of statistical inferences, we assume monotonicity and incorporate prior belief that is plausible in the surrogate context, by using prior distributions. We also explore Hie relationship among the surrogacy measures based on traditional models and this counterfactual model. The method is applied to the data from a glaucoma treatment study.

DOI:10.1111/j.1541-0420.2009.01303.x (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next