Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Kusunoki, Hall, and Barber find obese teen girls less likely to use birth control

Prescott finds reported sex offenses lower in neighborhoods with resident sex offenders

Geronimus says poor Detroiters face greater health risks given adverse social conditions


Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Elizabeth Bruch wins ASA award for paper in mathematical sociology

Next Brown Bag

PSC Brown Bags will be back fall 2015

A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials

Publication Abstract

Li, Y., J.M. Taylor, and Michael R. Elliott. 2010. "A Bayesian Approach to Surrogacy Assessment Using Principal Stratification in Clinical Trials." Biometrics, 66(2): 523-531.

A surrogate marker (5) is a variable that can be measured earlier and often more easily than the true endpoint (T) in a clinical trial. Most previous research has been devoted to developing surrogacy measures to quantify how well S Can replace T or examining the use of S in predicting the effect. of a (Z). However, the research often requires one to fit models for the distribution of T given S and Z. It is well known that such models do not have causal interpretations because the models condition on a postrandomization variable S. In this article: we directly model the relationship among T, S, and Z using a potential outcomes framework introduced by Frangakis and Rubin (2002, Biometrics 58, 21 29). We propose Bayesian estimation method to evaluate the causal probabilities associated with the cross-classification of the potential outcomes of S and T when S and T am both binary. We use a log-linear model to directly model the association between the potential outcomes of S and T through the odds ratios. The quantities derived from this approach always have causal interpretations. However, this causal model is not identifiable from the data without additional assumptions. To reduce the nonidentifiability problem and increase the precision of statistical inferences, we assume monotonicity and incorporate prior belief that is plausible in the surrogate context, by using prior distributions. We also explore Hie relationship among the surrogacy measures based on traditional models and this counterfactual model. The method is applied to the data from a glaucoma treatment study.

DOI:10.1111/j.1541-0420.2009.01303.x (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next