Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says America must "unchoose" policies that have led to mass incarceration

Axinn says new data on campus rape will "allow students to see for themselves the full extent of this problem"

Frey says white population is growing in Detroit and other large cities


Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

Next Brown Bag

Monday, Oct 12 at noon, 6050 ISR
Joe Grengs: Policy & planning for transportation equity

Investigating the Impact of Selection Bias in Dose-Response Analyses of Preventive Interventions

Publication Abstract

McGowan, H.M., R.L. Nix, Susan A. Murphy, and K.L. Bierman. 2010. "Investigating the Impact of Selection Bias in Dose-Response Analyses of Preventive Interventions." Prevention Science, 11(3): 239-251.

This paper focuses on the impact of selection bias in the context of extended, community-based prevention trials that attempt to "unpack" intervention effects and analyze mechanisms of change. Relying on dose-response analyses as the most general form of such efforts, this study provides two examples of how selection bias can affect the estimation of treatment effects. In Example 1, we describe an actual intervention in which selection bias was believed to influence the dose-response relation of an adaptive component in a preventive intervention for young children with severe behavior problems. In Example 2, we conduct a series of Monte Carlo simulations to illustrate just how severely selection bias can affect estimates in a dose-response analysis when the factors that affect dose are not recorded. We also assess the extent to which selection bias is ameliorated by the use of pretreatment covariates. We examine the implications of these examples and review trial design, data collection, and data analysis factors that can reduce selection bias in efforts to understand how preventive interventions have the effects they do.

DOI:10.1007/s11121-010-0169-2 (Full Text)

PMCID: PMC3044506. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next