Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

COSSA makes 10 suggestions to next Administration for supporting and using social science research

Thompson says US prison population is 'staggeringly high' at about 1.5 million, despite 2% drop for 2015

Levy et al. find Michigan's Medicaid expansion boosted state's economy while increasing number of insured

More News

Highlights

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

Russell Sage 2-week workshop on social science genomics, June 11-23, 2017, Santa Barbara

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Investigating the Impact of Selection Bias in Dose-Response Analyses of Preventive Interventions

Publication Abstract

McGowan, H.M., R.L. Nix, Susan A. Murphy, and K.L. Bierman. 2010. "Investigating the Impact of Selection Bias in Dose-Response Analyses of Preventive Interventions." Prevention Science, 11(3): 239-251.

This paper focuses on the impact of selection bias in the context of extended, community-based prevention trials that attempt to "unpack" intervention effects and analyze mechanisms of change. Relying on dose-response analyses as the most general form of such efforts, this study provides two examples of how selection bias can affect the estimation of treatment effects. In Example 1, we describe an actual intervention in which selection bias was believed to influence the dose-response relation of an adaptive component in a preventive intervention for young children with severe behavior problems. In Example 2, we conduct a series of Monte Carlo simulations to illustrate just how severely selection bias can affect estimates in a dose-response analysis when the factors that affect dose are not recorded. We also assess the extent to which selection bias is ameliorated by the use of pretreatment covariates. We examine the implications of these examples and review trial design, data collection, and data analysis factors that can reduce selection bias in efforts to understand how preventive interventions have the effects they do.

DOI:10.1007/s11121-010-0169-2 (Full Text)

PMCID: PMC3044506. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next