Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says criminal justice policies led to creation of prison gangs like Aryan Brotherhood

Schmitz finds job loss before retirement age contributes to weight gain, especially in men

Kimball says Fed should get comfortable with "backtracking"

Highlights

Overview of Michigan's advanced research computing resources, Monday, June 27, 9-10:30 am, BSRB - Kahn Auditorium

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Causal assessment of surrogacy in a meta-analysis of colorectal cancer trials

Publication Abstract

Li, Yun, Jeremy Taylor, Michael R. Elliott, and Daniel J. Sargent. 2011. "Causal assessment of surrogacy in a meta-analysis of colorectal cancer trials." Biometrics, 12(3): 478-492.

When the true end points (T) are difficult or costly to measure, surrogate markers (S) are often collected in clinical trials to help predict the effect of the treatment (Z). There is great interest in understanding the relationship among S, T, and Z. A principal stratification (PS) framework has been proposed by Frangakis and Rubin (2002) to study their causal associations. In this paper, we extend the framework to a multiple trial setting and propose a Bayesian hierarchical PS model to assess surrogacy. We apply the method to data from a large collection of colon cancer trials in which S and T are binary. We obtain the trial-specific causal measures among S, T, and Z, as well as their overall population-level counterparts that are invariant across trials. The method allows for information sharing across trials and reduces the nonidentifiability problem. We examine the frequentist properties of our model estimates and the impact of the monotonicity assumption using simulations. We also illustrate the challenges in evaluating surrogacy in the counterfactual framework that result from nonidentifiability.

DOI:10.1093/biostatistics/kxq082 (Full Text)

PMCID: PMC3114655. (Pub Med Central)

Browse | Search : All Pubs | Next