Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Axinn says data show incidents of sexual assault start at 'very young age'

Miech on 'generational forgetting' about drug-use dangers

Impacts of H-1B visas: Lower prices and higher production - or lower wages and higher profits?

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, Feb 13, 2017, noon:
Daniel Almirall, "Getting SMART about adaptive interventions"

Causal assessment of surrogacy in a meta-analysis of colorectal cancer trials

Publication Abstract

Li, Yun, Jeremy Taylor, Michael R. Elliott, and Daniel J. Sargent. 2011. "Causal assessment of surrogacy in a meta-analysis of colorectal cancer trials." Biometrics, 12(3): 478-492.

When the true end points (T) are difficult or costly to measure, surrogate markers (S) are often collected in clinical trials to help predict the effect of the treatment (Z). There is great interest in understanding the relationship among S, T, and Z. A principal stratification (PS) framework has been proposed by Frangakis and Rubin (2002) to study their causal associations. In this paper, we extend the framework to a multiple trial setting and propose a Bayesian hierarchical PS model to assess surrogacy. We apply the method to data from a large collection of colon cancer trials in which S and T are binary. We obtain the trial-specific causal measures among S, T, and Z, as well as their overall population-level counterparts that are invariant across trials. The method allows for information sharing across trials and reduces the nonidentifiability problem. We examine the frequentist properties of our model estimates and the impact of the monotonicity assumption using simulations. We also illustrate the challenges in evaluating surrogacy in the counterfactual framework that result from nonidentifiability.

DOI:10.1093/biostatistics/kxq082 (Full Text)

PMCID: PMC3114655. (Pub Med Central)

Browse | Search : All Pubs | Next