Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shapiro says Twitter-based employment index provides real-time accuracy

Xie says internet censorship in China often reflects local officials' concerns

Cheng finds marriage may not be best career option for women

Highlights

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Susan Murphy named Distinguished University Professor

Sarah Burgard and former PSC trainee Jennifer Ailshire win ASA award for paper

James Jackson to be appointed to NSF's National Science Board

Next Brown Bag


PSC Brown Bags will return in the fall

Causal assessment of surrogacy in a meta-analysis of colorectal cancer trials

Publication Abstract

Li, Yun, Jeremy Taylor, Michael R. Elliott, and Daniel J. Sargent. 2011. "Causal assessment of surrogacy in a meta-analysis of colorectal cancer trials." Biometrics, 12(3): 478-492.

When the true end points (T) are difficult or costly to measure, surrogate markers (S) are often collected in clinical trials to help predict the effect of the treatment (Z). There is great interest in understanding the relationship among S, T, and Z. A principal stratification (PS) framework has been proposed by Frangakis and Rubin (2002) to study their causal associations. In this paper, we extend the framework to a multiple trial setting and propose a Bayesian hierarchical PS model to assess surrogacy. We apply the method to data from a large collection of colon cancer trials in which S and T are binary. We obtain the trial-specific causal measures among S, T, and Z, as well as their overall population-level counterparts that are invariant across trials. The method allows for information sharing across trials and reduces the nonidentifiability problem. We examine the frequentist properties of our model estimates and the impact of the monotonicity assumption using simulations. We also illustrate the challenges in evaluating surrogacy in the counterfactual framework that result from nonidentifiability.

DOI:10.1093/biostatistics/kxq082 (Full Text)

PMCID: PMC3114655. (Pub Med Central)

Browse | Search : All Pubs | Next