Bailey and Dynarski cited in piece on why quality education should be a "civil and moral right"
Kalousova and Burgard find credit card debt increases likelihood of foregoing medical care
Arline Geronimus wins Excellence in Research Award from School of Public Health
Yu Xie to give DBASSE's David Lecture April 30, 2013 on "Is American Science in Decline?"
U-M grad programs do well in latest USN&WR "Best" rankings
Sheldon Danziger named president of Russell Sage Foundation
Back in September
Ghosh, D., Michael R. Elliott, and J.M. Taylor. 2010. "Links between Analysis of Surrogate Endpoints and Endogenity." Statistics in Medicine, 29(26): 2869–2879.
There has been substantive interest in the assessment of surrogate endpoints in medical research. These are measures that could potentially replace 'true' endpoints in clinical trials and lead to studies that require less follow-up. Recent research in the area has focused on assessments using causal inference frameworks. Beginning with a simple model for associating the surrogate and true endpoints in the population, we approach the problem as one of endogenous covariates. An instrumental variables estimator and general two-stage algorithm are proposed. Existing surrogacy frameworks are then evaluated in the context of the model. In addition, we define an extended relative effect estimator as well as a sensitivity analysis for assessing what we term the treatment instrumentality assumption. A numerical example is used to illustrate the methodology.
DOI:10.1002/sim.4027 (Full Text)
PMCID: PMC2997195. (Pub Med Central)
Browse | Search : All Pubs | Next