Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says America must "unchoose" policies that have led to mass incarceration

Axinn says new data on campus rape will "allow students to see for themselves the full extent of this problem"

Frey says white population is growing in Detroit and other large cities


Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

Next Brown Bag

Monday, Oct 12 at noon, 6050 ISR
Joe Grengs: Policy & planning for transportation equity

Bias Due to Left Truncation and Left Censoring in Longitudinal Studies of Developmental and Disease Processes

Publication Abstract

Cain, K., Sioban D. Harlow, R. J. A. Little, B. Nan, M. Yosef, J. Taffe, and Michael R. Elliott. 2011. "Bias Due to Left Truncation and Left Censoring in Longitudinal Studies of Developmental and Disease Processes." American Journal of Epidemiology, 173(9): 1078-1084.

In longitudinal studies of developmental and disease processes, participants are followed prospectively with intermediate milestones identified as they occur. Frequently, studies enroll participants over a range of ages including ages at which some participants' milestones have already passed. Ages at milestones that occur prior to study entry are left censored if individuals are enrolled in the study or left truncated if they are not. The authors examined the bias incurred by ignoring these issues when estimating the distribution of age at milestones or the time between 2 milestones. Methods that account for left truncation and censoring are considered. Data on the menopausal transition are used to illustrate the problem. Simulations show that bias can be substantial and that standard errors can be severely underestimated in naive analyses that ignore left truncation. Bias can be reduced when analyses account for left truncation, although the results are unstable when the fraction truncated is high. Simulations suggest that a better solution, when possible, is to modify the study design so that information on current status (i.e., whether or not a milestone has passed) is collected on all potential participants, analyzing those who are past the milestone at the time of recruitment as left censored rather than excluding such individuals from the analysis.

DOI:10.1093/aje/kwq481 (Full Text)

PMCID: PMC3121224. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next