Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stern, Novak, Harlow, and colleagues say compensation due Californians forcibly sterilized under eugenics laws

Burgard and Seelye find job insecurity linked to psychological distress among workers in later years

Former PSC trainee Jay Borchert parlays past incarceration and doctoral degree into pursuing better treatment of inmates

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder

Publication Abstract

Hosman, Carrie A., Ben Hansen, and Paul W. Holland. 2010. "The sensitivity of linear regression coefficients' confidence limits to the omission of a confounder." Annals of Applied Statistics, 4(2): 849-870.

Omitted variable bias can affect treatment effect estimates obtained from observational data due to the lack of random assignment to treatment groups. Sensitivity analyses adjust these estimates to quantify the impact of potential omitted variables. This paper presents methods of sensitivity analysis to adjust interval estimates of treatment effect both the point estimate and standard error obtained using multiple linear regression. Central to our approach is what we term benchmarking, the use of data to establish reference points for speculation about omitted confounders. The method adapts to treatment effects that may differ by subgroup, to scenarios involving omission of multiple variables, and to combinations of covariance adjustment with propensity score stratification. We illustrate it using data from an influential study of health outcomes of patients admitted to critical care.

DOI:10.1214/09-AOAS315 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next