Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Sastry's 10-year study of New Orleans Katrina evacuees shows demographic differences between returning and nonreturning

Stafford says less educated, smaller investors more likely to sell off stock and lock in losses during market downturn

Chen says job fit, job happiness can be achieved over time

Highlights

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Next Brown Bag

Monday, Oct 12
Joe Grengs, Policy & Planning for Social Equity in Transportation

Informing sequential clinical decision-making through reinforcement learning: an empirical study

Publication Abstract

Shortreed, Susan M., Eric Laber, Daniel J. Lizotte, T. Scott Stroup, Joelle Pineau , and Susan A. Murphy. 2011. "Informing sequential clinical decision-making through reinforcement learning: an empirical study." Machine Learning, 84(1-2): 109-136.

This paper highlights the role that reinforcement learning can play in the optimization of treatment policies for chronic illnesses. Before applying any off-the-shelf reinforcement learning methods in this setting, we must first tackle a number of challenges. We outline some of these challenges and present methods for overcoming them. First, we describe a multiple imputation approach to overcome the problem of missing data. Second, we discuss the use of function approximation in the context of a highly variable observation set. Finally, we discuss approaches to summarizing the evidence in the data for recommending a particular action and quantifying the uncertainty around the Q-function of the recommended policy. We present the results of applying these methods to real clinical trial data of patients with schizophrenia.

DOI:10.1007/s10994-010-5229-0 (Full Text)

PMCID: PMC3143507. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next