Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shapiro says Twitter-based employment index provides real-time accuracy

Xie says internet censorship in China often reflects local officials' concerns

Cheng finds marriage may not be best career option for women

Highlights

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Susan Murphy named Distinguished University Professor

Sarah Burgard and former PSC trainee Jennifer Ailshire win ASA award for paper

James Jackson to be appointed to NSF's National Science Board

Next Brown Bag


PSC Brown Bags will return in the fall

Informing sequential clinical decision-making through reinforcement learning: an empirical study

Publication Abstract

Shortreed, Susan M., Eric Laber, Daniel J. Lizotte, T. Scott Stroup, Joelle Pineau , and Susan A. Murphy. 2011. "Informing sequential clinical decision-making through reinforcement learning: an empirical study." Machine Learning, 84(1-2): 109-136.

This paper highlights the role that reinforcement learning can play in the optimization of treatment policies for chronic illnesses. Before applying any off-the-shelf reinforcement learning methods in this setting, we must first tackle a number of challenges. We outline some of these challenges and present methods for overcoming them. First, we describe a multiple imputation approach to overcome the problem of missing data. Second, we discuss the use of function approximation in the context of a highly variable observation set. Finally, we discuss approaches to summarizing the evidence in the data for recommending a particular action and quantifying the uncertainty around the Q-function of the recommended policy. We present the results of applying these methods to real clinical trial data of patients with schizophrenia.

DOI:10.1007/s10994-010-5229-0 (Full Text)

PMCID: PMC3143507. (Pub Med Central)

Country of focus: United States.

Browse | Search : All Pubs | Next