Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Attempted suicides among U.S. soldiers often occur before or soon after deployment

Shaefer and Edin's book ($2 a Day) cited in piece on political debate over plight of impoverished Americans

Eisenberg tracks factors affecting both mental health and athletic/academic performance among college athletes

Highlights

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Informing sequential clinical decision-making through reinforcement learning: an empirical study

Publication Abstract

Shortreed, Susan M., Eric Laber, Daniel J. Lizotte, T. Scott Stroup, Joelle Pineau , and Susan A. Murphy. 2011. "Informing sequential clinical decision-making through reinforcement learning: an empirical study." Machine Learning, 84(1-2): 109-136.

This paper highlights the role that reinforcement learning can play in the optimization of treatment policies for chronic illnesses. Before applying any off-the-shelf reinforcement learning methods in this setting, we must first tackle a number of challenges. We outline some of these challenges and present methods for overcoming them. First, we describe a multiple imputation approach to overcome the problem of missing data. Second, we discuss the use of function approximation in the context of a highly variable observation set. Finally, we discuss approaches to summarizing the evidence in the data for recommending a particular action and quantifying the uncertainty around the Q-function of the recommended policy. We present the results of applying these methods to real clinical trial data of patients with schizophrenia.

DOI:10.1007/s10994-010-5229-0 (Full Text)

PMCID: PMC3143507. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next