Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bailey and Dynarski cited in piece on why quality education should be a "civil and moral right"

Kalousova and Burgard find credit card debt increases likelihood of foregoing medical care

Bachman says findings on teens' greater materialism, slipping work ethic should be interpreted with caution

Highlights

Arline Geronimus wins Excellence in Research Award from School of Public Health

Yu Xie to give DBASSE's David Lecture April 30, 2013 on "Is American Science in Decline?"

U-M grad programs do well in latest USN&WR "Best" rankings

Sheldon Danziger named president of Russell Sage Foundation

Next Brown Bag



Back in September

Twitter Follow us 
on Twitter 

Informing sequential clinical decision-making through reinforcement learning: an empirical study

Publication Abstract

Shortreed, Susan M., Eric Laber, Daniel J. Lizotte, T. Scott Stroup, Joelle Pineau , and Susan A. Murphy. 2011. "Informing sequential clinical decision-making through reinforcement learning: an empirical study." Machine Learning, 84(1-2): 109-136.

This paper highlights the role that reinforcement learning can play in the optimization of treatment policies for chronic illnesses. Before applying any off-the-shelf reinforcement learning methods in this setting, we must first tackle a number of challenges. We outline some of these challenges and present methods for overcoming them. First, we describe a multiple imputation approach to overcome the problem of missing data. Second, we discuss the use of function approximation in the context of a highly variable observation set. Finally, we discuss approaches to summarizing the evidence in the data for recommending a particular action and quantifying the uncertainty around the Q-function of the recommended policy. We present the results of applying these methods to real clinical trial data of patients with schizophrenia.

DOI:10.1007/s10994-010-5229-0 (Full Text)

PMCID: PMC3143507. (Pub Med Central)

Country of focus: United States.

Browse | Search : All Pubs | Next