Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Inglehart says shaky job market for millennials has contributed to their disaffection

Stephenson says homophobia among gay men raises risk of intimate partner violence

Frey says having more immigrants with higher birth rates fills need in the US

More News

Highlights

Savolainen wins Outstanding Contribution Award for study of how employment affects recidivism among past criminal offenders

Giving Blueday at ISR focuses on investing in the next generation of social scientists

Pfeffer and Schoeni cover the economic and social dimensions of wealth inequality in this special issue

PRB Policy Communication Training Program for PhD students in demography, reproductive health, population health

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
H. Luke Shaefer

Performance Guarantees for Individualized Treatment Rules

Publication Abstract

Qian, Min, and Susan A. Murphy. 2011. "Performance Guarantees for Individualized Treatment Rules." Annals of Statistics, 39(2): 1180-1210.

Because many illnesses show heterogeneous response to treatment, there is increasing interest in individualizing treatment to patients [Arch. Gen. Psychiatry 66 (2009) 128-133]. An individualized treatment rule is a decision rule that recommends treatment according to patient characteristics. We consider the use of clinical trial data in the construction of an individualized treatment rule leading to highest mean response. This is a difficult computational problem because the objective function is the expectation of a weighted indicator function that is nonconcave in the parameters. Furthermore, there are frequently many pretreatment variables that may or may not be useful in constructing an optimal individualized treatment rule, yet cost and interpretability considerations imply that only a few variables should be used by the individualized treatment rule. To address these challenges, we consider estimation based on l(1)-penalized least squares. This approach is justified via a finite sample upper bound on the difference between the mean response due to the estimated individualized treatment rule and the mean response due to the optimal individualized treatment rule.

DOI:10.1214/10-AOS864 (Full Text)

PMCID: PMC3110016. (Pub Med Central)

Browse | Search : All Pubs | Next