Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bleakley says reversing US trade policies could be 'recipe for slowdown'

ISR's Scott Page cited on 'bee swarm' social influence in crowd response to Trump

Novak, Geronimus, and Martinez-Cardoso find fear of immigration can affect Latino birth outcomes

More News

Highlights

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

More Highlights

Next Brown Bag

Mon, Feb 13, 2017 at noon:
Daniel Almirall

Adaptive Confidence Intervals for the Test Error in Classification

Publication Abstract

Laber, Eric B., and Susan A. Murphy. 2011. "Adaptive Confidence Intervals for the Test Error in Classification." Journal of the American Statistical Association, 106(495): 904-913.

The estimated test error of a learned classifier is the most commonly reported measure of classifier performance. However, constructing a high-quality point estimator of the test error has proved to be very difficult. Furthermore, common interval estimators (e.g., confidence intervals) are based on the point estimator of the test error and thus inherit all the difficulties associated with the point estimation problem. As a result, these confidence intervals do not reliably deliver nominal coverage. In contrast, we directly construct the confidence interval by using smooth data-dependent upper and lower bounds on the test error. We prove that, for linear classifiers, the proposed confidence interval automatically adapts to the nonsmoothness of the test error, is consistent under fixed and local alternatives, and does not require that the Bayes classifier be linear. Moreover, the method provides nominal coverage on a suite of test problems using a range of classification algorithms and sample sizes. This article has supplementary material online.

DOI:10.1198/jasa.2010.tm10053 (Full Text)

PMCID: PMC3285493. (Pub Med Central)

Browse | Search : All Pubs | Next