Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bailey and Dynarski cited in piece on why quality education should be a "civil and moral right"

Kalousova and Burgard find credit card debt increases likelihood of foregoing medical care

Bachman says findings on teens' greater materialism, slipping work ethic should be interpreted with caution

Highlights

Arline Geronimus wins Excellence in Research Award from School of Public Health

Yu Xie to give DBASSE's David Lecture April 30, 2013 on "Is American Science in Decline?"

U-M grad programs do well in latest USN&WR "Best" rankings

Sheldon Danziger named president of Russell Sage Foundation

Next Brown Bag



Back in September

Twitter Follow us 
on Twitter 

Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis

Publication Abstract

Lizotte, Daniel, M. Bowling, and Susan A. Murphy. 2010. "Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis." In Proceedings of the 27th International Conference on Machine Learning (ICML 2010) edited by Johannes Furnkranz and Thorsten Joachims. Madison, WI: International Machine Learning Society.

We introduce new, efficient algorithms for value iteration with multiple reward functions and continuous state. We also give an algorithm for finding the set of all non-dominated actions in the continuous state setting. This novel extension is appropriate for environments with continuous or finely discretized states where generalization is required, as is the case for data analysis of randomized controlled trials.

ISBN: 978-1-60558-907-7

Public Access Link

Browse | Search : All Pubs | Next