Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says LGBT social movement will bring new strength in push for tighter gun control

Yang says devalued pound will decrease resources for the families of migrant workers in Britain

Work by Brown, Ryan, Jackson cited in brief for UT Supreme Court case on race-conscious college admissions

Highlights

Overview of Michigan's advanced research computing resources, Monday, June 27, 9-10:30 am, BSRB - Kahn Auditorium

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis

Publication Abstract

Lizotte, Daniel, M. Bowling, and Susan A. Murphy. 2010. "Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis." In Proceedings of the 27th International Conference on Machine Learning (ICML 2010) edited by Johannes Furnkranz and Thorsten Joachims. Madison, WI: International Machine Learning Society.

We introduce new, efficient algorithms for value iteration with multiple reward functions and continuous state. We also give an algorithm for finding the set of all non-dominated actions in the continuous state setting. This novel extension is appropriate for environments with continuous or finely discretized states where generalization is required, as is the case for data analysis of randomized controlled trials.

ISBN: 978-1-60558-907-7

Public Access Link

Browse | Search : All Pubs | Next