Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says criminal justice policies led to creation of prison gangs like Aryan Brotherhood

Schmitz finds job loss before retirement age contributes to weight gain, especially in men

Kimball says Fed should get comfortable with "backtracking"


Overview of Michigan's advanced research computing resources, Monday, June 27, 9-10:30 am, BSRB - Kahn Auditorium

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Model-Free Monte Carlo-like Policy Evaluation

Publication Abstract

Fonteneau, R., Susan A. Murphy, L. Wehenkel, and D. Ernst. 2010. "Model-Free Monte Carlo-like Policy Evaluation." In Volume 9: AISTATS 2010 Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann Publishers.

We propose an algorithm for estimating the finite-horizon expected return of a closed loop control policy from an a priori given (off-policy) sample of one-step transitions. It averages cumulated rewards along a set of "broken trajectories" made of one-step transitions selected from the sample on the basis of the control policy. Under some Lipschitz continuity assumptions on the system dynamics, reward function and control policy, we provide bounds on the bias and variance of the estimator that depend only on the Lipschitz constants, on the number of broken trajectories used in the estimator, and on the sparsity of the sample of one-step transitions.

Browse | Search : All Pubs | Next