Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam looks at population and development in next 15 years in UN commission keynote address

Mitchell et al. find harsh family environments may magnify disadvantage via impact on 'genetic architecture'

Frey says Arizona's political paradoxes explained in part by demography

Highlights

Raghunathan appointed director of Survey Research Center

PSC newsletter spring 2014 issue now available

Kusunoki wins faculty seed grant award from Institute for Research on Women and Gender

2014 PAA Annual Meeting, May 1-3, Boston

Next Brown Bag

Monday, April 21
Grant Miller: Managerial Incentives in Public Service Delivery

Model-Free Monte Carlo-like Policy Evaluation

Publication Abstract

Fonteneau, R., Susan A. Murphy, L. Wehenkel, and D. Ernst. 2010. "Model-Free Monte Carlo-like Policy Evaluation." In Volume 9: AISTATS 2010 Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann Publishers.

We propose an algorithm for estimating the finite-horizon expected return of a closed loop control policy from an a priori given (off-policy) sample of one-step transitions. It averages cumulated rewards along a set of "broken trajectories" made of one-step transitions selected from the sample on the basis of the control policy. Under some Lipschitz continuity assumptions on the system dynamics, reward function and control policy, we provide bounds on the bias and variance of the estimator that depend only on the Lipschitz constants, on the number of broken trajectories used in the estimator, and on the sparsity of the sample of one-step transitions.

Browse | Search : All Pubs | Next