Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Yu Xie photo

Estimating Heterogeneous Treatment Effects with Observational Data

Publication Abstract

Download PDF versionXie, Yu, Jennie Brand, and Ben Jann. 2011. "Estimating Heterogeneous Treatment Effects with Observational Data." PSC Research Report No. 11-729. 2 2011.

Heterogeneous treatment effects are widely recognized but seldom studied empirically in quantitative sociological research. We suspect that lack of accessible statistical methods is one reason why heterogeneous treatment effects are not routinely assessed and reported. In this paper, we discuss a practical approach to studying heterogeneous treatment effects, under the same assumption commonly underlying regression analysis: ignorability. We specifically describe two methods. For the first method (SM-HTE), we begin by estimating propensity scores for the probability of treatment given a set of observed covariates for each unit and construct balanced propensity score strata; we then estimate propensity score stratum-specific average treatment effects and evaluate a trend across the strata-specific treatment effects. For the second method (MS-HTE), we match control units to treated units based on the propensity score and transform the data into treatment-control comparisons at the most elementary level at which such comparisons can be constructed; we then estimate treatment effects as a function of the propensity score by fitting a non-parametric model as a smoothing device. We illustrate the application of the two methods with a concrete empirical example.

Browse | Search : All Pubs | Next