Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Weir's 2009 report on NFL brain injuries got more attention than neurological findings published in 2005

Edin and Shaefer's book a call to action for Americans to deal with poverty

Weir says pain may underlie rise in suicide and substance-related deaths among white middle-aged Americans


MCubed opens for new round of seed funding, November 4-18

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

John Knodel honored by Thailand's Chulalongkorn University

Next Brown Bag

Monday, Dec 7 at noon, 6050 ISR-Thompson
Daniel Eisenberg, "Healthy Minds Network: Mental Health among College-Age Populations"

Yu Xie photo

Estimating Heterogeneous Treatment Effects with Observational Data

Publication Abstract

Download PDF versionXie, Yu, Jennie Brand, and Ben Jann. 2011. "Estimating Heterogeneous Treatment Effects with Observational Data." PSC Research Report No. 11-729. February 2011.

Heterogeneous treatment effects are widely recognized but seldom studied empirically in quantitative sociological research. We suspect that lack of accessible statistical methods is one reason why heterogeneous treatment effects are not routinely assessed and reported. In this paper, we discuss a practical approach to studying heterogeneous treatment effects, under the same assumption commonly underlying regression analysis: ignorability. We specifically describe two methods. For the first method (SM-HTE), we begin by estimating propensity scores for the probability of treatment given a set of observed covariates for each unit and construct balanced propensity score strata; we then estimate propensity score stratum-specific average treatment effects and evaluate a trend across the strata-specific treatment effects. For the second method (MS-HTE), we match control units to treated units based on the propensity score and transform the data into treatment-control comparisons at the most elementary level at which such comparisons can be constructed; we then estimate treatment effects as a function of the propensity score by fitting a non-parametric model as a smoothing device. We illustrate the application of the two methods with a concrete empirical example.

Browse | Search : All Pubs | Next