Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Mitchell finds children who lose fathers suffer at cellular level

Seefeldt says hard work alone won't allow poor to reach middle-class status in America

Shaefer says proposed plan to cover tax cuts would hurt a lot of struggling Americans

More News

Highlights

Neal Krause wins GSA's Robert Kleemeier Award

MiCDA Research Fellowship - applications due July 21, 2017

U-M awarded $58 million to develop ideas for preventing and treating health problems

Bailey, Eisenberg , and Fomby promoted at PSC

More Highlights

Yu Xie photo

Population Heterogeneity and Causal Inference

Publication Abstract

Download PDF versionXie, Yu. 2011. "Population Heterogeneity and Causal Inference." PSC Research Report No. 11-731. 3 2011.

Population heterogeneity is ubiquitous in social science research. The very objective of social science is not to discover abstract and universal laws but to understand population heterogeneity. Due to population heterogeneity, causal inference with observational data in social science is impossible without strong assumptions. There are two potential sources of bias. The first is bias in unobserved pretreatment factors affecting the outcome even in the absence of treatment. The second is bias due to heterogeneity in treatment effects. In this paper, I show how “composition bias” due to population heterogeneity arises when treatment propensity is systematically associated with heterogeneous treatment effects. Of particular interest is the way in which composition bias, a form of selection bias, arises even under the classic assumption of ignorability, as I demonstrate with a simple simulation example.

Browse | Search : All Pubs | Next