Bailey and Dynarski cited in piece on why quality education should be a "civil and moral right"
Kalousova and Burgard find credit card debt increases likelihood of foregoing medical care
Arline Geronimus wins Excellence in Research Award from School of Public Health
Yu Xie to give DBASSE's David Lecture April 30, 2013 on "Is American Science in Decline?"
U-M grad programs do well in latest USN&WR "Best" rankings
Sheldon Danziger named president of Russell Sage Foundation
Back in September
Xie, Yu. 2011. "Population Heterogeneity and Causal Inference." PSC Research Report No. 11-731. March 2011.
Population heterogeneity is ubiquitous in social science research. The very objective of social science is not to discover abstract and universal laws but to understand population heterogeneity. Due to population heterogeneity, causal inference with observational data in social science is impossible without strong assumptions. There are two potential sources of bias. The first is bias in unobserved pretreatment factors affecting the outcome even in the absence of treatment. The second is bias due to heterogeneity in treatment effects. In this paper, I show how “composition bias” due to population heterogeneity arises when treatment propensity is systematically associated with heterogeneous treatment effects. Of particular interest is the way in which composition bias, a form of selection bias, arises even under the classic assumption of ignorability, as I demonstrate with a simple simulation example.
Browse | Search : All Pubs | Next