Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Smock says cohabitation does not reduce odds of marriage

Smock cited in story on how low marriage rates may exacerbate marriage-status economic inequality

Shapiro says Americans' seemingly volatile spending pattern linked to 'sensible cash management'

Highlights

Susan Murphy named Distinguished University Professor

Sarah Burgard and former PSC trainee Jennifer Ailshire win ASA award for paper

James Jackson to be appointed to NSF's National Science Board

ISR's program in Society, Population, and Environment (SPE) focuses on social change and social issues worldwide.

Next Brown Bag


PSC Brown Bags will return in the fall

Yu Xie photo

Population Heterogeneity and Causal Inference

Publication Abstract

Download PDF versionXie, Yu. 2011. "Population Heterogeneity and Causal Inference." PSC Research Report No. 11-731. March 2011.

Population heterogeneity is ubiquitous in social science research. The very objective of social science is not to discover abstract and universal laws but to understand population heterogeneity. Due to population heterogeneity, causal inference with observational data in social science is impossible without strong assumptions. There are two potential sources of bias. The first is bias in unobserved pretreatment factors affecting the outcome even in the absence of treatment. The second is bias due to heterogeneity in treatment effects. In this paper, I show how “composition bias” due to population heterogeneity arises when treatment propensity is systematically associated with heterogeneous treatment effects. Of particular interest is the way in which composition bias, a form of selection bias, arises even under the classic assumption of ignorability, as I demonstrate with a simple simulation example.

Browse | Search : All Pubs | Next