Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

A multiple imputation approach to disclosure limitation for high-age individuals in longitudinal studies

Archived Abstract of Former PSC Researcher

An, D., R.J. Little, and James McNally. 2010. "A multiple imputation approach to disclosure limitation for high-age individuals in longitudinal studies." Statistics in Medicine, 29(17): 1769-1778.

Disclosure limitation is an important consideration in the release of public use data sets. It is particularly challenging for longitudinal data sets, since information about an individual accumulates with repeated measures over time. Research on disclosure limitation methods for longitudinal data has been very limited. We consider here problems created by high ages in cohort studies. Because of the risk of disclosure, ages of very old respondents can often not be released; in particular, this is a specific stipulation of the Health Insurance Portability and Accountability Act (HIPAA) for the release of health data for individuals. Top-coding of individuals beyond a certain age is a standard way of dealing with this issue, and it may be adequate for cross-sectional data, when a modest number of cases are affected. However, this approach leads to serious loss of information in longitudinal studies when individuals have been followed for many years. We propose and evaluate an alternative to top-coding for this situation based on multiple imputation (MI). This MI method is applied to a survival analysis of simulated data, and data from the Charleston Heart Study (CHS), and is shown to work well in preserving the relationship between hazard and covariates. Copyright (C) 2010 John Wiley & Sons, Ltd.

DOI:10.1002/sim.3974 (Full Text)

PMCID: PMC2910194. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next