Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

H. Luke Shaefer and colleagues argue for a universal child allowance

Hindustan Times points out high value of H-1B visas for US innovation, welfare, and tech firm profits

Novak, Geronimus, Martinez-Cardoso: Threat of deportation harmful to immigrants' health

More News

Highlights

Heather Ann Thompson wins Pulitzer Prize for book on Attica uprising

Lam explores dimensions of the projected 4 billion increase in world population before 2100

ISR's Nick Prieur wins UMOR award for exceptional contribution to U-M's research mission

How effectively can these nations handle outside investments in health R&D?

More Highlights

A multiple imputation approach to disclosure limitation for high-age individuals in longitudinal studies

Archived Abstract of Former PSC Researcher

An, D., R.J. Little, and James McNally. 2010. "A multiple imputation approach to disclosure limitation for high-age individuals in longitudinal studies." Statistics in Medicine, 29(17): 1769-1778.

Disclosure limitation is an important consideration in the release of public use data sets. It is particularly challenging for longitudinal data sets, since information about an individual accumulates with repeated measures over time. Research on disclosure limitation methods for longitudinal data has been very limited. We consider here problems created by high ages in cohort studies. Because of the risk of disclosure, ages of very old respondents can often not be released; in particular, this is a specific stipulation of the Health Insurance Portability and Accountability Act (HIPAA) for the release of health data for individuals. Top-coding of individuals beyond a certain age is a standard way of dealing with this issue, and it may be adequate for cross-sectional data, when a modest number of cases are affected. However, this approach leads to serious loss of information in longitudinal studies when individuals have been followed for many years. We propose and evaluate an alternative to top-coding for this situation based on multiple imputation (MI). This MI method is applied to a survival analysis of simulated data, and data from the Charleston Heart Study (CHS), and is shown to work well in preserving the relationship between hazard and covariates. Copyright (C) 2010 John Wiley & Sons, Ltd.

DOI:10.1002/sim.3974 (Full Text)

PMCID: PMC2910194. (Pub Med Central)

Country of focus: United States of America.

Browse | Search : All Pubs | Next