Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Daniel Almirall photo

Subgroups Analysis when Treatment and Moderators are Time-varying

Publication Abstract

Almirall, Daniel, Daniel F. McCaffrey, Rajeev Ramchand, and Susan A. Murphy. 2013. "Subgroups Analysis when Treatment and Moderators are Time-varying." Preventive Science, 4(2): 169-178.

Prevention scientists are often interested in understanding characteristics of participants that are predictive of treatment effects because these characteristics can be used to inform the types of individuals who benefit more or less from treatment or prevention programs. Often, effect moderation questions are examined using subgroups analysis or, equivalently, using covariate × treatment interactions in the context of regression analysis. This article focuses on conceptualizing and examining causal effect moderation in longitudinal settings in which both treatment and the putative moderators are time-varying. Studying effect moderation in the time-varying setting helps identify which individuals will benefit more or less from additional treatment services on the basis of both individual characteristics and their evolving outcomes, symptoms, severity, and need. Examining effect moderation in these longitudinal settings, however, is difficult because moderators of future treatment may themselves be affected by prior treatment (for example, future moderators may be mediators of prior treatment). This article introduces moderated intermediate causal effects in the time-varying setting, describes how they are part of Robins' Structural Nested Mean Model, discusses two problems with using a traditional regression approach to estimate these effects, and describes a new approach (a two-stage regression estimator) to estimate these effects. The methodology is illustrated using longitudinal data to examine the time-varying effects of receiving community-based substance abuse treatment as a function of time-varying severity (or need).

DOI:10.1007/s11121-011-0208-7 (Full Text)

PMCID: PMC3135740. (Pub Med Central)

Browse | Search : All Pubs | Next