Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Axinn says data show incidents of sexual assault start at 'very young age'

Miech on 'generational forgetting' about drug-use dangers

Impacts of H-1B visas: Lower prices and higher production - or lower wages and higher profits?

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, Feb 13, 2017, noon:
Daniel Almirall, "Getting SMART about adaptive interventions"

Daniel Almirall photo

Subgroups Analysis when Treatment and Moderators are Time-varying

Publication Abstract

Almirall, Daniel, Daniel F. McCaffrey, Rajeev Ramchand, and Susan A. Murphy. 2013. "Subgroups Analysis when Treatment and Moderators are Time-varying." Preventive Science, 4(2): 169-178.

Prevention scientists are often interested in understanding characteristics of participants that are predictive of treatment effects because these characteristics can be used to inform the types of individuals who benefit more or less from treatment or prevention programs. Often, effect moderation questions are examined using subgroups analysis or, equivalently, using covariate × treatment interactions in the context of regression analysis. This article focuses on conceptualizing and examining causal effect moderation in longitudinal settings in which both treatment and the putative moderators are time-varying. Studying effect moderation in the time-varying setting helps identify which individuals will benefit more or less from additional treatment services on the basis of both individual characteristics and their evolving outcomes, symptoms, severity, and need. Examining effect moderation in these longitudinal settings, however, is difficult because moderators of future treatment may themselves be affected by prior treatment (for example, future moderators may be mediators of prior treatment). This article introduces moderated intermediate causal effects in the time-varying setting, describes how they are part of Robins' Structural Nested Mean Model, discusses two problems with using a traditional regression approach to estimate these effects, and describes a new approach (a two-stage regression estimator) to estimate these effects. The methodology is illustrated using longitudinal data to examine the time-varying effects of receiving community-based substance abuse treatment as a function of time-varying severity (or need).

DOI:10.1007/s11121-011-0208-7 (Full Text)

PMCID: PMC3135740. (Pub Med Central)

Browse | Search : All Pubs | Next