Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Former trainee Herbert says residential squatters may be a good thing

Work by Couper, Farley et al. shows impact of racial composition on neighborhood choice

Thompson details killings and shaping of official narrative in 1971 Attica prison uprising

More News

Highlights

Michigan ranked #12 on Business Insider's list of 50 best American colleges

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Sample size formulae for two-stage randomized trials with survival outcomes

Publication Abstract

Li, Zhiguo, and Susan A. Murphy. 2011. "Sample size formulae for two-stage randomized trials with survival outcomes." Biometrika, 98(3): 503-518.

Two-stage randomized trials are growing in importance in developing adaptive treatment strategies, i.e. treatment policies or dynamic treatment regimes. Usually, the first stage involves randomization to one of the several initial treatments. The second stage of treatment begins when an early nonresponse criterion or response criterion is met. In the second-stage, nonresponding subjects are re-randomized among second-stage treatments. Sample size calculations for planning these two-stage randomized trials with failure time outcomes are challenging because the variances of common test statistics depend in a complex manner on the joint distribution of time to the early nonresponse criterion or response criterion and the primary failure time outcome. We produce simple, albeit conservative, sample size formulae by using upper bounds on the variances. The resulting formulae only require the working assumptions needed to size a standard single-stage randomized trial and, in common settings, are only mildly conservative. These sample size formulae are based on either a weighted Kaplan-Meier estimator of survival probabilities at a fixed time-point or a weighted version of the log-rank test.

DOI:10.1093/biomet/asr019 (Full Text)

PMCID: PMC3254237. (Pub Med Central)

Browse | Search : All Pubs | Next