Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bound, Geronimus, et al. find estimates of decreasing longevity among low-SES whites sensitive to measures and interpretations

Thompson casts doubt on the rehabilitative intentions of prison labor

Inglehart says European social democracy is a victim of its own success

More News

Highlights

Seefeldt discusses her book Abandoned Families, Wed, March 29, 4 PM, Annenberg Auditorium

U-M participants at PAA Annual Meeting, April 27-29

Heather Ann Thompson wins Bancroft Prize for History for 'Blood in the Water'

Michigan ranks in USN&WR top-10 grad schools for sociology, public health, labor economics, social policy, social psychology

More Highlights

Next Brown Bag

Mon, April 10, 2017, noon:
Elizabeth Bruch

Propensity-Score-Based Methods versus MTE-Based Methods in Causal Inference

Publication Abstract

Download PDF versionZhou, Xiang, and Yu Xie. 2011. "Propensity-Score-Based Methods versus MTE-Based Methods in Causal Inference." PSC Research Report No. 11-747. 12 2011.

Since the seminal introduction of the propensity score by Rosenbaum and Rubin, propensity-score-based (PS-based) methods have been widely used for drawing causal inferences in the behavioral and social sciences. However, the propensity score approach depends on the ignorability assumption: there are no unobserved confounders once observed covariates are taken into account. For situations where this assumption may be violated, Heckman and his associates have recently developed a novel approach based on marginal treatment effects (MTE). In this paper, we (1) explicate consequences for PS-based methods when aspects of the ignorability assumption are violated; (2) compare PS-based methods and MTE-based methods by making a close examination of their identification assumptions and estimation performances; (3) illustrate these two approaches in estimating the economic return to college using data from NLSY 1979 and discuss discrepancies in results. When there is a sorting gain but no systematic baseline difference between treated and untreated units given observed covariates, PS-based methods can identify the treatment effect of the treated (TT). The MTE approach performs best when there is a valid and strong instrumental variable (IV).

Country of focus: United States of America.

Browse | Search : All Pubs | Next