Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Kruger says reports of phantom mobile phone ringing/vibrating more common among anxious

Stafford says too early to say whether stock market declines will curtail Americans' spending

Eisenberg says many colleges now train campus personnel to spot and refer troubled college students

Highlights

Call for papers: Conference on Integrating Genetics and the Social Sciences, Oct 21-22, 2016, CU-Boulder

PRB training program in policy communication for pre-docs. Application deadline, 2.28.2016

Call for proposals: PSID small grants for research on life course impacts on later life wellbeing

PSC News, fall 2015 now available

Next Brown Bag

Monday, Feb 1 at noon, 6050 ISR-Thompson
Sarah Miller

Propensity-Score-Based Methods versus MTE-Based Methods in Causal Inference

Publication Abstract

Download PDF versionZhou, Xiang, and Yu Xie. 2011. "Propensity-Score-Based Methods versus MTE-Based Methods in Causal Inference." PSC Research Report No. 11-747. December 2011.

Since the seminal introduction of the propensity score by Rosenbaum and Rubin, propensity-score-based (PS-based) methods have been widely used for drawing causal inferences in the behavioral and social sciences. However, the propensity score approach depends on the ignorability assumption: there are no unobserved confounders once observed covariates are taken into account. For situations where this assumption may be violated, Heckman and his associates have recently developed a novel approach based on marginal treatment effects (MTE). In this paper, we (1) explicate consequences for PS-based methods when aspects of the ignorability assumption are violated; (2) compare PS-based methods and MTE-based methods by making a close examination of their identification assumptions and estimation performances; (3) illustrate these two approaches in estimating the economic return to college using data from NLSY 1979 and discuss discrepancies in results. When there is a sorting gain but no systematic baseline difference between treated and untreated units given observed covariates, PS-based methods can identify the treatment effect of the treated (TT). The MTE approach performs best when there is a valid and strong instrumental variable (IV).

Country of focus: United States of America.

Browse | Search : All Pubs | Next