Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam discusses shifts in global population, past and future

Thompson says LGBT social movement will bring new strength in push for tighter gun control

Yang says devalued pound will decrease resources for the families of migrant workers in Britain

Highlights

Overview of Michigan's advanced research computing resources, Monday, June 27, 9-10:30 am, BSRB - Kahn Auditorium

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

The 2010 Morris Hansen Lecture Dealing with Survey Nonresponse in Data Collection, in Estimation Discussion

Archived Abstract of Former PSC Researcher

Tourangeau, Roger. 2011. "The 2010 Morris Hansen Lecture Dealing with Survey Nonresponse in Data Collection, in Estimation Discussion." Journal of Official Statistics, 27(1): 29-32.

In dealing with survey nonresponse, statisticians need to consider (a) measures to be taken at the data collection stage, and (b) measures to be taken at the estimation stage. One may employ some form of responsive design. In the later stages of the data collection in particular, one tries to achieve an ultimate set of responding units that is "better balanced" or "more representative" than if no special effort is made. The concept of "balanced response set" introduced in this article extends the well-known idea of "balanced sample." A measure of "lack of balance" is proposed; it is a quadratic form relating to a multivariate auxiliary vector; its statistical properties are explored. But whether or not good balance has been achieved in the data collection, a compelling question remains at the estimation stage: How to achieve the most effective reduction of nonresponse bias in the survey estimates. Balancing alone may not help. The nonresponse adjustment effort is aided by a bias indicator, a product of three factors involving selected powerful auxiliary variables.

Browse | Search : All Pubs | Next