Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Groves keynote speaker at MIDAS symposium, Nov 15-16: "Big Data: Advancing Science, Changing the World"

Shaefer says drop child tax credit in favor of universal, direct investment in American children

Buchmueller breaks down partisan views on Obamacare

More News


Gonzalez, Alter, and Dinov win NSF "Big Data Spokes" award for neuroscience network

Post-doc Melanie Wasserman wins dissertation award from Upjohn Institute

ISR kicks off DE&I initiative with lunchtime presentation: Oct 13, noon, 1430 ISR Thompson

U-M ranked #4 in USN&WR's top public universities

More Highlights

Next Brown Bag

Mon, Oct 24 at noon:
Academic innovation & the global public research university, James Hilton

The 2010 Morris Hansen Lecture Dealing with Survey Nonresponse in Data Collection, in Estimation Discussion

Archived Abstract of Former PSC Researcher

Tourangeau, Roger. 2011. "The 2010 Morris Hansen Lecture Dealing with Survey Nonresponse in Data Collection, in Estimation Discussion." Journal of Official Statistics, 27(1): 29-32.

In dealing with survey nonresponse, statisticians need to consider (a) measures to be taken at the data collection stage, and (b) measures to be taken at the estimation stage. One may employ some form of responsive design. In the later stages of the data collection in particular, one tries to achieve an ultimate set of responding units that is "better balanced" or "more representative" than if no special effort is made. The concept of "balanced response set" introduced in this article extends the well-known idea of "balanced sample." A measure of "lack of balance" is proposed; it is a quadratic form relating to a multivariate auxiliary vector; its statistical properties are explored. But whether or not good balance has been achieved in the data collection, a compelling question remains at the estimation stage: How to achieve the most effective reduction of nonresponse bias in the survey estimates. Balancing alone may not help. The nonresponse adjustment effort is aided by a bias indicator, a product of three factors involving selected powerful auxiliary variables.

Browse | Search : All Pubs | Next