Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer says drop child tax credit in favor of universal, direct investment in American children

Buchmueller breaks down partisan views on Obamacare

ISR's Conrad says mobile phone polling faces non-response bias

More News


Gonzalez, Alter, and Dinov win NSF "Big Data Spokes" award for neuroscience network

Post-doc Melanie Wasserman wins dissertation award from Upjohn Institute

ISR kicks off DE&I initiative with lunchtime presentation: Oct 13, noon, 1430 ISR Thompson

U-M ranked #4 in USN&WR's top public universities

More Highlights

Next Brown Bag

Mon, Oct 24 at noon:
Academic innovation & the global public research university, James Hilton

Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region

Publication Abstract

Zhang, K., E.M. Oswald, Daniel G. Brown, S.J. Brines, C.J. Gronlund, J.L. White-Newsome, R.B. Rood, and M.S. O'Neill. 2011. "Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region." Environmental Research, 111(8): 1046-1053.

Background: Because of the warming climate urban temperature patterns have been receiving increased attention. Temperature within urban areas can vary depending on land cover, meteorological and other factors. High resolution satellite data can be used to understand this intra-urban variability, although they have been primarily studied to characterize urban heat islands at a larger spatial scale. Objective: This study examined whether satellite-derived impervious surface and meteorological conditions from multiple sites can improve characterization of spatial variability of temperature within an urban area. Methods: Temperature was measured at 17 outdoor sites throughout the Detroit metropolitan area during the summer of 2008. Kriging and linear regression were applied to daily temperatures and secondary information, including impervious surface and distance-to-water. Performance of models in predicting measured temperatures was evaluated by cross-validation. Variograms derived from several scenarios were compared to determine whether high-resolution impervious surface information could capture fine-scale spatial structure of temperature in the study area. Results: Temperatures measured at the sites were significantly different from each other, and all kriging techniques generally performed better than the two linear regression models. Impervious surface values and distance-to-water generally improved predictions slightly. Restricting models to days with lake breezes and with less cloud cover also somewhat improved the predictions. In addition, incorporating high-resolution impervious surface information into cokriging or universal kriging enhanced the ability to characterize fine-scale spatial structure of temperature. Conclusions: Meteorological and satellite-derived data can better characterize spatial variability in temperature across a metropolitan region. The data sources and methods we used can be applied in epidemiological studies and public health interventions to protect vulnerable populations from extreme heat events. (C) 2011 Elsevier Inc. All rights reserved.

DOI:10.1016/j.envres.2011.08.012 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next