Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stafford says exiting down stock market worsened position of low-income households

Bailey's work cited on growing income disparities in college enrollment and graduation

Murphy says mobile sensor data will allow adaptive interventions for maximizing healthy outcomes

Highlights

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Next Brown Bag

Monday, Nov 3
Melvin Stephens, Estimating Program Benefits

Impact of historical land-use changes on greenhouse gas exchange in the US Great Plains, 1883-2003

Publication Abstract

Hartman, M.D., Emily Merchant, W. Parton, Myron Gutmann, S. Lutz, and S. Williams. 2011. "Impact of historical land-use changes on greenhouse gas exchange in the US Great Plains, 1883-2003." Ecological Applications, 21(4): 1105-1119.

European settlement of North America has involved monumental environmental change. From the late 19th century to the present, agricultural practices in the Great Plains of the United States have dramatically reduced soil organic carbon (C) levels and increased greenhouse gas (GHG) fluxes in this region. This paper details the development of an innovative method to assess these processes. Detailed land-use data sets that specify complete agricultural histories for 21 representative Great Plains counties reflect historical changes in agricultural practices and drive the biogeochemical model, DAYCENT, to simulate 120 years of cropping and related ecosystem consequences. Model outputs include yields of all major crops, soil and system C levels, soil trace-gas fluxes (N(2)O emissions and CH(4) consumption), and soil nitrogen mineralization rates. Comparisons between simulated and observed yields allowed us to adjust and refine model inputs, and then to verify and validate the results. These verification and validation exercises produced measures of model fit that indicated the appropriateness of this approach for estimating historical changes in crop yield. Initial cultivation of native grass and continued farming produced a significant loss of soil C over decades, and declining soil fertility led to reduced crop yields. This process was accompanied by a large GHG release, which subsided as soil fertility decreased. Later, irrigation, nitrogen-fertilizer application, and reduced cultivation intensity restored soil fertility and increased crop yields, but led to increased N(2)O emissions that reversed the decline in net GHG release. By drawing on both historical evidence of land-use change and scientific models that estimate the environmental consequences of those changes, this paper offers an improved way to understand the short-and long-term ecosystem effects of 120 years of cropping in the Great Plains.

DOI:10.1890/10-0036.1 (Full Text)

Country of focus: United States of America.

Browse | Search : All Pubs | Next