Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says criminal justice policies led to creation of prison gangs like Aryan Brotherhood

Schmitz finds job loss before retirement age contributes to weight gain, especially in men

Kimball says Fed should get comfortable with "backtracking"

Highlights

Overview of Michigan's advanced research computing resources, Monday, June 27, 9-10:30 am, BSRB - Kahn Auditorium

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Interaction Terms in Nonlinear Models

Publication Abstract

Karaca-Mandic, P., Edward Norton, and B. Dowd. 2012. "Interaction Terms in Nonlinear Models." Health Services Research, 47(1): 255-274.

Objectives. To explain the use of interaction terms in nonlinear models. Study Design. We discuss the motivation for including interaction terms in multivariate analyses. We then explain how the straightforward interpretation of interaction terms in linear models changes in nonlinear models, using graphs and equations. We extend the basic results from logit and probit to difference-in-differences models, models with higher powers of explanatory variables, other nonlinear models (including log transformation and ordered models), and panel data models. Empirical Application. We show how to calculate and interpret interaction effects using a publicly available Stata data set with a binary outcome. Stata 11 has added several features which make those calculations easier. LIMDEP code also is provided. Conclusions. It is important to understand why interaction terms are included in nonlinear models in order to be clear about their substantive interpretation.

DOI:10.1111/j.1475-6773.2011.01314.x (Full Text)

Browse | Search : All Pubs | Next