Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Levy says ACA has helped increase rates of insured, but rates still lowest among poor

Bruch reveals key decision criteria in making first cuts on dating sites

Murphy on extending health support via a smart phone and JITAI

More News

Highlights

U-M ranked #4 in USN&WR's top public universities

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

Mon, Sept 19 at noon:
Paradox of Unintended Pregnancy, Jennifer Barber

Interaction Terms in Nonlinear Models

Publication Abstract

Karaca-Mandic, P., Edward Norton, and B. Dowd. 2012. "Interaction Terms in Nonlinear Models." Health Services Research, 47(1): 255-274.

Objectives. To explain the use of interaction terms in nonlinear models. Study Design. We discuss the motivation for including interaction terms in multivariate analyses. We then explain how the straightforward interpretation of interaction terms in linear models changes in nonlinear models, using graphs and equations. We extend the basic results from logit and probit to difference-in-differences models, models with higher powers of explanatory variables, other nonlinear models (including log transformation and ordered models), and panel data models. Empirical Application. We show how to calculate and interpret interaction effects using a publicly available Stata data set with a binary outcome. Stata 11 has added several features which make those calculations easier. LIMDEP code also is provided. Conclusions. It is important to understand why interaction terms are included in nonlinear models in order to be clear about their substantive interpretation.

DOI:10.1111/j.1475-6773.2011.01314.x (Full Text)

Browse | Search : All Pubs | Next