Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Smock cited in story on how low marriage rates may exacerbate marriage-status economic inequality

Shapiro says Americans' seemingly volatile spending pattern linked to 'sensible cash management'

Work of Cigolle, Ofstedal et al. cited in Forbes story on frailty risk among the elderly

Highlights

Sarah Burgard and former PSC trainee Jennifer Ailshire win ASA award for paper

James Jackson to be appointed to NSF's National Science Board

ISR's program in Society, Population, and Environment (SPE) focuses on social change and social issues worldwide.

McEniry and Schoeni host Conference on Long-run Impacts of Early Life Events

Next Brown Bag


PSC Brown Bags will return in the fall

Latent Class Analysis of Response Inconsistencies across Modes of Data Collection

Archived Abstract of Former PSC Researcher

Yan, Ting, Frauke Kreuter, and Roger Tourangeau. 2012. "Latent Class Analysis of Response Inconsistencies across Modes of Data Collection." Social Science Research, 41(5): 1017-1027.

Latentclassanalysis (LCA) has been hailed as a promising technique for studying measurement errors in surveys, because the models produce estimates of the error rates associated with a given question. Still, the issue arises as to how accurate these error estimates are and under what circumstances they can be relied on. Skeptics argue that latentclass models can understate the true error rates and at least one paper (Kreuter et al., 2008) demonstrates such underestimation empirically. We applied latentclass models to data from two waves of the National Survey of Family Growth (NSFG), focusing on a pair of similar items about abortion that are administered under different modes of datacollection. The first item is administered by computer-assisted personal interviewing (CAPI); the second, by audio computer-assisted self-interviewing (ACASI). Evidence shows that abortions are underreported in the NSFG and the conventional wisdom is that ACASI item yields fewer false negatives than the CAPI item. To evaluate these items, we made assumptions about the error rates within various subgroups of the population; these assumptions were needed to achieve an identifiable LCA model. Because there are external data available on the actual prevalence of abortion (by subgroup), we were able to form subgroups for which the identifying restrictions were likely to be (approximately) met and other subgroups for which the assumptions were likely to be violated. We also ran more complex models that took potential heterogeneity within subgroups into account. Most of the models yielded implausibly low error rates, supporting the argument that, under specific conditions, LCA models underestimate the error rates.

DOI:10.1016/j.ssresearch.2012.05.006 (Full Text)

Public Access Link

Browse | Search : All Pubs | Next