Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Investigating the Relationship between Neighborhood Poverty and Mortality Risk: A Marginal Structural Modeling Approach

Publication Abstract

Download PDF versionDo, D. Phuong, Lu Wang, and Michael R. Elliott. 2012. "Investigating the Relationship between Neighborhood Poverty and Mortality Risk: A Marginal Structural Modeling Approach." PSC Research Report No. 12-763. 6 2012.

Extant observational studies generally support the existence of a link between neighborhood context and health. However, estimating the causal impact of neighborhood-effects from observational data has proven to be a challenge. Omission of relevant factors may lead to overestimating the effects of neighborhoods on health while inclusion of time-varying confounders that may also be mediators (e.g., income, labor force status) may lead to underestimation. Using longitudinal data from the 1990-2007 Panel Study of Income Dynamics, this study investigates the link between neighborhood poverty and overall mortality risk. A marginal structural modeling strategy is employed to appropriately adjust for simultaneous mediating and confounding factors. To address the issue of possible upward bias from the omission of key variables, sensitivity analysis to assess the robustness of results against unobserved confounding is conducted. Compared to conventional naïve estimates, which did not reveal a link between neighborhood poverty and mortality risk, the marginal structural model estimates indicated a statistically significant increase in mortality risk with increasing neighborhood poverty. Sensitivity analysis indicated that estimates were moderately robust to omitted variable bias.

Browse | Search : All Pubs | Next