Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam discusses shifts in global population, past and future

Thompson says LGBT social movement will bring new strength in push for tighter gun control

Yang says devalued pound will decrease resources for the families of migrant workers in Britain

Highlights

Overview of Michigan's advanced research computing resources, Monday, June 27, 9-10:30 am, BSRB - Kahn Auditorium

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Susan Murphy elected to the National Academy of Sciences

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Yu Xie photo

Values and limitations of statistical models

Publication Abstract

Xie, Yu. 2011. "Values and limitations of statistical models." Research in Social Stratification and Mobility, 29(3): 343-349.

Methodological consequences of population heterogeneity for the sequential logit model in studies of education transitions are now well understood. There are two main mechanisms by which heterogeneity may cause biases to parameter estimates in sequential logit models: outcome incommensurability and population incommensurability. These methodological problems are intrinsic to the substantive research question and thus are not easily remediable with better statistical models. All statistical solutions require extra information in the form of additional data or additional assumptions. In some settings, the researcher may explicitly introduce a form of heterogeneity into the sequential logit model and then evaluate the model. In other settings, the researcher may wish to stay with the conventional sequential logit model and interpret the results descriptively.

DOI:10.1016/j.rssm.2011.04.001 (Full Text)

PMCID: PMC3203205. (Pub Med Central)

Browse | Search : All Pubs | Next