Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Almirall says comparing SMART designs will increase treatment quality for children with autism

Thompson says America must "unchoose" policies that have led to mass incarceration

Alter says lack of access to administrative data is "big drag on research"


Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

Next Brown Bag

Monday, Oct 12 at noon, 6050 ISR
Joe Grengs: Policy & planning for transportation equity

Joint composite estimating functions in spatiotemporal models

Publication Abstract

Bai, Y., P.K. Song, and Trivellore Raghunathan. 2012. "Joint composite estimating functions in spatiotemporal models." Journal of the Royal Statistical Society Series B-Statistical Methodology, 74: 799-824.

Modelling of spatiotemporal processes has received considerable attention in recent statistical research. However, owing to the high dimensionality of the data, the joint modelling of spatial and temporal processes presents a great computational challenge, in both likelihood-based and Bayesian approaches. We propose a joint composite estimating function approach to estimating spatiotemporal covariance structures. This substantially reduces the computational complexity and is more efficient than existing composite likelihood methods. The novelty of the proposed joint composite estimating function is rooted in the construction of three sets of estimating functions from spatial, temporal and spatiotemporal cross-pairs, which results in overidentified estimating functions. Thus, we form a joint inference function in a spirit that is similar to Hansen's generalized method of moments. We show that under practical scenarios the estimator proposed is consistent and asymptotically normal. Simulation studies prove that our method performs well in finite samples. Finally, we illustrate the joint composite estimating function method by estimating the spatiotemporal dependence structure of airborne particulates (PM10) in the north-eastern USA over a 32-month period.

DOI:10.1111/j.1467-9868.2012.01035.x (Full Text)

Browse | Search : All Pubs | Next