Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

The Economist cites Inglehart in piece on strength of populists

Ela and Budnick find higher unintended pregnancy risk among non-heterosexual women

Patrick, Schulenberg et al. find trends in frequent binge drinking among teens vary by race, sex, SES

More News

Highlights

Bailey, Eisenberg , and Fomby promoted at PSC

Former PSC trainee Eric Chyn wins PAA's Dorothy S. Thomas Award for best paper

Celebrating departing PSC trainees

Bloome finds children raised outside stable 2-parent families more likely to become low-income adults, regardless of parents' income

More Highlights

Joint composite estimating functions in spatiotemporal models

Publication Abstract

Bai, Y., P.K. Song, and Trivellore Raghunathan. 2012. "Joint composite estimating functions in spatiotemporal models." Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74: 799-824.

Modelling of spatiotemporal processes has received considerable attention in recent statistical research. However, owing to the high dimensionality of the data, the joint modelling of spatial and temporal processes presents a great computational challenge, in both likelihood-based and Bayesian approaches. We propose a joint composite estimating function approach to estimating spatiotemporal covariance structures. This substantially reduces the computational complexity and is more efficient than existing composite likelihood methods. The novelty of the proposed joint composite estimating function is rooted in the construction of three sets of estimating functions from spatial, temporal and spatiotemporal cross-pairs, which results in overidentified estimating functions. Thus, we form a joint inference function in a spirit that is similar to Hansen's generalized method of moments. We show that under practical scenarios the estimator proposed is consistent and asymptotically normal. Simulation studies prove that our method performs well in finite samples. Finally, we illustrate the joint composite estimating function method by estimating the spatiotemporal dependence structure of airborne particulates (PM10) in the north-eastern USA over a 32-month period.

DOI:10.1111/j.1467-9868.2012.01035.x (Full Text)

Browse | Search : All Pubs | Next