Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Work by Bailey and Dynarski cited in NYT piece on income inequality

Pfeffer says housing bubble masked decade-long growth in household net worth inequality

House, Burgard, Schoeni et al find that unemployment and recession have contrasting effects on mortality risk

Highlights

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Susan Murphy named Distinguished University Professor

Sarah Burgard and former PSC trainee Jennifer Ailshire win ASA award for paper

James Jackson to be appointed to NSF's National Science Board

Next Brown Bag


PSC Brown Bags will return in the fall

Joint composite estimating functions in spatiotemporal models

Publication Abstract

Bai, Y., P.K. Song, and Trivellore Raghunathan. 2012. "Joint composite estimating functions in spatiotemporal models." Journal of the Royal Statistical Society Series B-Statistical Methodology, 74: 799-824.

Modelling of spatiotemporal processes has received considerable attention in recent statistical research. However, owing to the high dimensionality of the data, the joint modelling of spatial and temporal processes presents a great computational challenge, in both likelihood-based and Bayesian approaches. We propose a joint composite estimating function approach to estimating spatiotemporal covariance structures. This substantially reduces the computational complexity and is more efficient than existing composite likelihood methods. The novelty of the proposed joint composite estimating function is rooted in the construction of three sets of estimating functions from spatial, temporal and spatiotemporal cross-pairs, which results in overidentified estimating functions. Thus, we form a joint inference function in a spirit that is similar to Hansen's generalized method of moments. We show that under practical scenarios the estimator proposed is consistent and asymptotically normal. Simulation studies prove that our method performs well in finite samples. Finally, we illustrate the joint composite estimating function method by estimating the spatiotemporal dependence structure of airborne particulates (PM10) in the north-eastern USA over a 32-month period.

DOI:10.1111/j.1467-9868.2012.01035.x (Full Text)

Browse | Search : All Pubs | Next