Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Edin and Shaefer's book a call to action for Americans to deal with poverty

Weir says pain may underlie rise in suicide and substance-related deaths among white middle-aged Americans

Weitzman says China's one-child policy has had devastating effects on first-born daughters


MCubed opens for new round of seed funding, November 4-18

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

John Knodel honored by Thailand's Chulalongkorn University

Next Brown Bag

Monday, Dec 7 at noon, 6050 ISR-Thompson
Daniel Eisenberg, "Healthy Minds Network: Mental Health among College-Age Populations"

Data Quality in HIV/AIDS Web-Based Surveys: Handling Invalid and Suspicious Data

Publication Abstract

Bauermeister, J., E. Pingel, Martin B. Zimmerman, Mick P. Couper, A. Carballo-Dieguez, and V. Strecher. 2012. "Data Quality in HIV/AIDS Web-Based Surveys: Handling Invalid and Suspicious Data." Field Methods, 24(3): 272-291.

Invalid data may compromise data quality. We examined how decisions made to handle these data may affect the relationship between Internet use and HIV risk behaviors in a sample of young men who have sex with men (YMSM). We recorded 548 entries during the 3-month period and created six analytic groups (i.e., full sample, entries initially tagged as valid, suspicious entries, valid cases mislabeled as suspicious, fraudulent data, and total valid cases) using data quality decisions. We compared these groups on the sample's composition and their bivariate relationships. Forty-one cases were marked as invalid, affecting the statistical precision of our estimates but not the relationships between variables. Sixty-two additional cases were flagged as suspicious entries and found to contribute to the sample's diversity and observed relationships. Using our final analytic sample, we found that very conservative criteria regarding data exclusion may prevent researchers from observing true associations. We discuss the implications of data quality decisions and its implications for the design of future HIV/AIDS web surveys.

DOI:10.1177/1525822x12443097 (Full Text)

PMCID: PMC3505140. (Pub Med Central)

Browse | Search : All Pubs | Next