Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer says drop child tax credit in favor of universal, direct investment in American children

Buchmueller breaks down partisan views on Obamacare

ISR's Conrad says mobile phone polling faces non-response bias

More News


Gonzalez, Alter, and Dinov win NSF "Big Data Spokes" award for neuroscience network

Post-doc Melanie Wasserman wins dissertation award from Upjohn Institute

ISR kicks off DE&I initiative with lunchtime presentation: Oct 13, noon, 1430 ISR Thompson

U-M ranked #4 in USN&WR's top public universities

More Highlights

Next Brown Bag

Mon, Oct 24 at noon:
Academic innovation & the global public research university, James Hilton

Multiple imputation using multivariate gh transformations

Publication Abstract

He, Y., and Trivellore Raghunathan. 2012. "Multiple imputation using multivariate gh transformations." Journal of Applied Statistics, 39(10): 2177-2198.

Multiple imputation has emerged as a popular approach to handling data sets with missing values. For incomplete continuous variables, imputations are usually produced using multivariate normal models. However, this approach might be problematic for variables with a strong non-normal shape, as it would generate imputations incoherent with actual distributions and thus lead to incorrect inferences. For non-normal data, we consider a multivariate extension of Tukey's gh distribution/transformation [38] to accommodate skewness and/or kurtosis and capture the correlation among the variables. We propose an algorithm to fit the incomplete data with the model and generate imputations. We apply the method to a national data set for hospital performance on several standard quality measures, which are highly skewed to the left and substantially correlated with each other. We use Monte Carlo studies to assess the performance of the proposed approach. We discuss possible generalizations and give some advices to practitioners on how to handle non-normal incomplete data.

DOI:10.1080/02664763.2012.702268 (Full Text)

Browse | Search : All Pubs | Next