Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Yang comments on importance of migrant remittances to future of recipient families

Bailey and Danziger's War on Poverty book reviewed in NY Review of Books

Bloomberg cites MTF data in story on CDC's anti-smoking ads for e-cigarettes


Hicken wins 2015 UROP Outstanding Research Mentor Award

U-M ranked #1 in Sociology of Population by USN&WR's "Best Graduate Schools"

PAA 2015 Annual Meeting: Preliminary program and list of UM participants

ISR addition wins LEED Gold Certification

Next Brown Bag

Mon, April 6
Jinkook Lee, Wellbeing of the Elderly in East Asia

A Bayesian model for time-to-event data with informative censoring

Publication Abstract

Kaciroti, N., Trivellore Raghunathan, J. Taylor, and S. Julius. 2012. "A Bayesian model for time-to-event data with informative censoring." Biostatistics, 13(2): 341-54.

Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently analyzed using the Kaplan-Meier or product limit (PL) estimation method. However, the PL method assumes that the censoring mechanism is noninformative and when this assumption is violated, the inferences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative incidence curves. The expanded method uses a model, which can be viewed as a pattern mixture model, where odds for having an event during the follow-up interval $$({t}{k-1},{t}{k}]$$, conditional on being at risk at $${t}_{k-1}$$, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event, between subjects from a missing-data pattern with the observed subjects for each interval. The large number of the sensitivity parameters is reduced by considering them as random and assumed to follow a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the expanded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing HYpertension.

DOI:10.1093/biostatistics/kxr048 (Full Text)

PMCID: PMC3297827. (Pub Med Central)

Browse | Search : All Pubs | Next