Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam looks at population and development in next 15 years in UN commission keynote address

Mitchell et al. find harsh family environments may magnify disadvantage via impact on 'genetic architecture'

Frey says Arizona's political paradoxes explained in part by demography

Highlights

PSC newsletter spring 2014 issue now available

Kusunoki wins faculty seed grant award from Institute for Research on Women and Gender

2014 PAA Annual Meeting, May 1-3, Boston

USN&WR ranks Michigan among best in nation for graduate education in sociology, public health, economics

Next Brown Bag

Monday, April 21
Grant Miller: Managerial Incentives in Public Service Delivery

A Bayesian model for time-to-event data with informative censoring

Publication Abstract

Kaciroti, N., Trivellore Raghunathan, J. Taylor, and S. Julius. 2012. "A Bayesian model for time-to-event data with informative censoring." Biostatistics, 13(2): 341-54.

Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently analyzed using the Kaplan-Meier or product limit (PL) estimation method. However, the PL method assumes that the censoring mechanism is noninformative and when this assumption is violated, the inferences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative incidence curves. The expanded method uses a model, which can be viewed as a pattern mixture model, where odds for having an event during the follow-up interval $$({t}{k-1},{t}{k}]$$, conditional on being at risk at $${t}_{k-1}$$, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event, between subjects from a missing-data pattern with the observed subjects for each interval. The large number of the sensitivity parameters is reduced by considering them as random and assumed to follow a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the expanded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing HYpertension.

DOI:10.1093/biostatistics/kxr048 (Full Text)

PMCID: PMC3297827. (Pub Med Central)

Browse | Search : All Pubs | Next