Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey comments on why sunbelt metro area economies are still struggling

Krause says having religious friends leads to gratitude, which is associated with better health

Work by Bailey and Dynarski on growing income gap in graduation rates cited in NYT

Highlights

Find an innovative research Cube at the MCubed Symposium, Oct 9, register now

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Next Brown Bag

Monday, Oct 6
Elisha Renne (Michigan)

Experimental Design and Primary Data Analysis Methods for Comparing Adaptive Interventions

Publication Abstract

Nahum-Shani, I., M. Qian, D. Almirall, W. Pelham, B. Gnagy, G. Fabiano, J. Waxmonsky, J. Yu, and Susan A. Murphy. 2012. "Experimental Design and Primary Data Analysis Methods for Comparing Adaptive Interventions." Psychological Methods, 17(4): 457-477.

In recent years, research in the area of intervention development has been shifting from the traditional fixed-intervention approach to adaptive interventions, which allow greater individualization and adaptation of intervention options (i.e., intervention type and/or dosage) over time. Adaptive interventions are operationalized via a sequence of decision rules that specify how intervention options should be adapted to an individual's characteristics and changing needs, with the general aim to optimize the long-term effectiveness of the intervention. Here, we review adaptive interventions, discussing the potential contribution of this concept to research in the behavioral and social sciences. We then propose the sequential multiple assignment randomized trial (SMART), an experimental design useful for addressing research questions that inform the construction of high-quality adaptive interventions. To clarify the SMART approach and its advantages, we compare SMART with other experimental approaches. We also provide methods for analyzing data from SMART to address primary research questions that inform the construction of a high-quality adaptive intervention.

DOI:10.1037/a0029372 (Full Text)

NIHMSID: NIHMS422560. (Pub Med Central)

Browse | Search : All Pubs | Next