Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Yang says remittances from workers abroad increase educational attainment for children

Kimball's failed replication of Reinhart-Rogoff finding cited in argument for tempered public response to social science research results

Edin and Shaefer's book on destitute families in America reviewed in NYT

Highlights

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Next Brown Bag

Monday, Oct 12
Joe Grengs, Policy & Planning for Social Equity in Transportation

Q-Learning: A Data Analysis Method for Constructing Adaptive Interventions

Publication Abstract

Nahum-Shani, I., M. Qian, Daniel Almirall, W. Pelham, B. Gnagy, G. Fabiano, J. Waxmonsky, J. Yu, and Susan A. Murphy. 2012. "Q-Learning: A Data Analysis Method for Constructing Adaptive Interventions." Psychological Methods, 17(4): 478-494.

Increasing interest in individualizing and adapting intervention services over time has led to the development of adaptive interventions. Adaptive interventions operationalize the individualization of a sequence of intervention options over time via the use of decision rules that input participant information and output intervention recommendations. We introduce Q-learning, which is a generalization of regression analysis to settings in which a sequence of decisions regarding intervention options or services is made. The use of Q is to indicate that this method is used to assess the relative qualify of the intervention options. In particular, we use Q-learning with linear regression to estimate the optimal (i.e., most effective) sequence of decision rules. We illustrate how Q-teaming can be used with data from sequential multiple assignment randomized trials (SMARTs; Murphy, 2005) to inform the construction of a more deeply tailored sequence of decision rules than those embedded in the SMART design. We also discuss the advantages of Q-learning compared to other data analysis approaches. Finally, we use the Adaptive Interventions for Children With ADHD SMART study (Center for Children and Families, University at Buffalo, State University of New York, William E. Pelham as principal investigator) for illustration.

DOI:10.1037/a0029373 (Full Text)

PMCID: PMC3747013. (Pub Med Central)

Browse | Search : All Pubs | Next