Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey comments on why sunbelt metro area economies are still struggling

Krause says having religious friends leads to gratitude, which is associated with better health

Work by Bailey and Dynarski on growing income gap in graduation rates cited in NYT

Highlights

Find an innovative research Cube at the MCubed Symposium, Oct 9, register now

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Next Brown Bag

Monday, Oct 6
Elisha Renne (Michigan)

Use of Paradata in a Responsive Design Framework to Manage a Field Data Collection

Publication Abstract

Wagner, J., B. West, N. Kirgis, James M. Lepkowski, William Axinn, and S. Ndiaye. 2012. "Use of Paradata in a Responsive Design Framework to Manage a Field Data Collection." Journal of Official Statistics, 28(4): 477-499.

In many surveys there is a great deal of uncertainty about assumptions regarding key design parameters. This leads to uncertainty about the cost and error structures of the surveys. Responsive survey designs use indicators of potential survey error to determine when design changes should be made on an ongoing basis during data collection. These changes are meant to minimize total survey error. They are made during the field period as updated estimates of proxy indicators for the various sources of error become available. In this article we illustrate responsive design in a large continuous data collection: the 2006-2010 U.S. National Survey of Family Growth. We describe three paradata-guided interventions designed to improve survey quality: case prioritization, "screener week," and sample balance. Our analyses demonstrate that these interventions systematically alter interviewer behavior, creating beneficial effects on both efficiency and proxy measures of the risk of nonresponse bias, such as variation in subgroup response rates.

Browse | Search : All Pubs | Next