Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Surprising findings on what influences unintended pregnancy from Wise, Geronimus and Smock

Recommendations on how to reduce discrimination resulting from ban-the-box policies cite Starr's work

Brian Jacob on NAEP scores: "Michigan is the only state in the country where proficiency rates have actually declined over time."

More News

Highlights

Call for papers: Conference on computational social science, April 2017, U-M

Sioban Harlow honored with 2017 Sarah Goddard Power Award for commitment to women's health

Post-doc fellowship in computational social science for summer or fall 2017, U-Penn

ICPSR Summer Program scholarships to support training in statistics, quantitative methods, research design, and data analysis

More Highlights

Next Brown Bag

Mon, March 13, 2017, noon:
Rachel Best

Vegetation productivity consequences of human settlement growth in the eastern United States

Publication Abstract

Zhao, T., Daniel G. Brown, H. Fang, D. Theobald, T. Liu, and T. Zhang. 2012. "Vegetation productivity consequences of human settlement growth in the eastern United States." Landscape Ecology, 27(8): 1149-1165.

In this study, we investigated the impact of human settlement growth on vegetation carbon uptake in the eastern United States between 1992/1993 and 2001. Human settlement growth was measured by changes in the density of housing units. Vegetation carbon uptake was estimated with gross primary production (GPP) based on the light-use efficiency approach applied to satellite imagery. Annual GPP was found to increase by approximately 140 g C m(-2) on average for the entire study area in 2001 compared to 1992/1993, accompanied by region-wide increases in downward shortwave radiation and minimum daily temperature. Changes in GPP, however, varied significantly by different types of settlement growth. Exurbanized areas, where the rural settlement (less than 0.025 units per acre) converted to exurbs (0.025-0.6 units per acre), were associated with approximately 157 g C m(-2) increase in GPP due to high vegetation proportions. Suburbanization, the conversion from exurban settlement to suburbs (0.6-4 units per acre), was related with a decline of GPP by 152 g C m(-2) due to progressive development of built-up land cover. Results help to understand the potential of carbon mitigation in the human-dominated landscapes using vegetation as a natural store of carbon dioxide. This in turn has implications for the low-carbon development planning along the gradient of human settlement densities.

DOI:10.1007/s10980-012-9766-8 (Full Text)

Browse | Search : All Pubs | Next