Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Smock discusses the "new American family" on NPR

Pfeffer and colleagues re-examine impacts of community college attendance

Frey explains the minority-majority remapping of America

Highlights

Apply for 2-year NICHD Postdoctoral Fellowships that begin September 2015

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Next Brown Bag

Monday, Dec 1
Linda Waite

Vegetation productivity consequences of human settlement growth in the eastern United States

Publication Abstract

Zhao, T., Daniel Brown, H. Fang, D. Theobald, T. Liu, and T. Zhang. 2012. "Vegetation productivity consequences of human settlement growth in the eastern United States." Landscape Ecology, 27(8): 1149-1165.

In this study, we investigated the impact of human settlement growth on vegetation carbon uptake in the eastern United States between 1992/1993 and 2001. Human settlement growth was measured by changes in the density of housing units. Vegetation carbon uptake was estimated with gross primary production (GPP) based on the light-use efficiency approach applied to satellite imagery. Annual GPP was found to increase by approximately 140 g C m(-2) on average for the entire study area in 2001 compared to 1992/1993, accompanied by region-wide increases in downward shortwave radiation and minimum daily temperature. Changes in GPP, however, varied significantly by different types of settlement growth. Exurbanized areas, where the rural settlement (less than 0.025 units per acre) converted to exurbs (0.025-0.6 units per acre), were associated with approximately 157 g C m(-2) increase in GPP due to high vegetation proportions. Suburbanization, the conversion from exurban settlement to suburbs (0.6-4 units per acre), was related with a decline of GPP by 152 g C m(-2) due to progressive development of built-up land cover. Results help to understand the potential of carbon mitigation in the human-dominated landscapes using vegetation as a natural store of carbon dioxide. This in turn has implications for the low-carbon development planning along the gradient of human settlement densities.

DOI:10.1007/s10980-012-9766-8 (Full Text)

Browse | Search : All Pubs | Next