Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bailey and Danziger's War on Poverty book reviewed in NY Review of Books

Bloomberg cites MTF data in story on CDC's anti-smoking ads for e-cigarettes

Bound says notion that foreign college students are displacing U.S. students "isn't right"

Highlights

U-M ranked #1 in Sociology of Population by USN&WR's "Best Graduate Schools"

PAA 2015 Annual Meeting: Preliminary program and list of UM participants

ISR addition wins LEED Gold Certification

PSC Fall 2014 Newsletter now available

Next Brown Bag

Mon, April 6
Jinkook Lee, Wellbeing of the Elderly in East Asia

Batch mode reinforcement learning based on the synthesis of artificial trajectories

Publication Abstract

Fonteneau, R., Susan A. Murphy, L. Wehenkel, and D. Ernst. 2013. "Batch mode reinforcement learning based on the synthesis of artificial trajectories." Annals of Operations Research, 208(1): 383-416.

In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of "artificial trajectories" from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning.

DOI:10.1007/s10479-012-1248-5 (Full Text)

PMCID: PMC3773886. (Pub Med Central)

Browse | Search : All Pubs | Next