Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stafford says too early to say whether stock market declines will curtail Americans' spending

Eisenberg says many colleges now train campus personnel to spot and refer troubled college students

Farley on new strategies for city insolvencies in Michigan

Highlights

Call for papers: Conference on Integrating Genetics and the Social Sciences, Oct 21-22, 2016, CU-Boulder

PRB training program in policy communication for pre-docs. Application deadline, 2.28.2016

Call for proposals: PSID small grants for research on life course impacts on later life wellbeing

PSC News, fall 2015 now available

Next Brown Bag

Monday, Feb 1 at noon, 6050 ISR-Thompson
Sarah Miller

Batch mode reinforcement learning based on the synthesis of artificial trajectories

Publication Abstract

Fonteneau, R., Susan A. Murphy, L. Wehenkel, and D. Ernst. 2013. "Batch mode reinforcement learning based on the synthesis of artificial trajectories." Annals of Operations Research, 208(1): 383-416.

In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of "artificial trajectories" from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning.

DOI:10.1007/s10479-012-1248-5 (Full Text)

PMCID: PMC3773886. (Pub Med Central)

Browse | Search : All Pubs | Next