Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Levy says ACA has helped increase rates of insured, but rates still lowest among poor

Bruch reveals key decision criteria in making first cuts on dating sites

Murphy on extending health support via a smart phone and JITAI

More News

Highlights

U-M ranked #4 in USN&WR's top public universities

Frey's new report explores how the changing US electorate could shape the next 5 presidential elections, 2016 to 2032

U-M's Data Science Initiative offers expanded consulting services via CSCAR

Elizabeth Bruch promoted to Associate Professor

Next Brown Bag

Mon, Sept 19 at noon:
Paradox of Unintended Pregnancy, Jennifer Barber

Batch mode reinforcement learning based on the synthesis of artificial trajectories

Publication Abstract

Fonteneau, R., Susan A. Murphy, L. Wehenkel, and D. Ernst. 2013. "Batch mode reinforcement learning based on the synthesis of artificial trajectories." Annals of Operations Research, 208(1): 383-416.

In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of "artificial trajectories" from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning.

DOI:10.1007/s10479-012-1248-5 (Full Text)

PMCID: PMC3773886. (Pub Med Central)

Browse | Search : All Pubs | Next