Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam says tightening global labor market good for American workers

Johnston says e-cigs may reverse two-decades of progress on smoking reduction

Mueller-Smith finds incarceration increases the likelihood of committing more, and more serious, crimes

Highlights

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Elizabeth Bruch wins ASA award for paper in mathematical sociology

Next Brown Bag

PSC Brown Bags will be back fall 2015


Batch mode reinforcement learning based on the synthesis of artificial trajectories

Publication Abstract

Fonteneau, R., Susan A. Murphy, L. Wehenkel, and D. Ernst. 2013. "Batch mode reinforcement learning based on the synthesis of artificial trajectories." Annals of Operations Research, 208(1): 383-416.

In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of "artificial trajectories" from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning.

DOI:10.1007/s10479-012-1248-5 (Full Text)

PMCID: PMC3773886. (Pub Med Central)

Browse | Search : All Pubs | Next