Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Thompson says America must "unchoose" policies that have led to mass incarceration

Axinn says new data on campus rape will "allow students to see for themselves the full extent of this problem"

Frey says white population is growing in Detroit and other large cities


Susan Murphy to speak at U-M kickoff for data science initiative, Oct 6, Rackham

Andrew Goodman-Bacon, former trainee, wins 2015 Nevins Prize for best dissertation in economic history

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

Next Brown Bag

Monday, Oct 5 at noon, 6050 ISR
Colter Mitchell: Biological consequences of poverty

Impact of Birth Seasonality on Dynamics of Acute Immunizing Infections in Sub-Saharan Africa

Archived Abstract of Former PSC Researcher

Dorelien, Audrey, Sebastien Ballesteros, and Bryan Grenfell. 2013. "Impact of Birth Seasonality on Dynamics of Acute Immunizing Infections in Sub-Saharan Africa." PLoS ONE, 8(10).

We analyze the impact of birth seasonality (seasonal oscillations in the birth rate) on the dynamics of acute, immunizing childhood infectious diseases. Previous research has explored the effect of human birth seasonality on infectious disease dynamics using parameters appropriate for the developed world. We build on this work by including in our analysis an extended range of baseline birth rates and amplitudes, which correspond to developing world settings. Additionally, our analysis accounts for seasonal forcing both in births and contact rates. We focus in particular on the dynamics of measles. In the absence of seasonal transmission rates or stochastic forcing, for typical measles epidemiological parameters, birth seasonality induces either annual or biennial epidemics. Changes in the magnitude of the birth fluctuations (birth amplitude) can induce significant changes in the size of the epidemic peaks, but have little impact on timing of disease epidemics within the year. In contrast, changes to the birth seasonality phase (location of the peak in birth amplitude within the year) significantly influence the timing of the epidemics. In the presence of seasonality in contact rates, at relatively low birth rates (20 per 1000), birth amplitude has little impact on the dynamics but does have an impact on the magnitude and timing of the epidemics. However, as the mean birth rate increases, both birth amplitude and phase play an important role in driving the dynamics of the epidemic. There are stronger effects at higher birth rates.

DOI:10.1371/journal.pone.0075806 (Full Text)

PMCID: PMC3799982. (Pub Med Central)

Public Access Link

Country of focus: Sub-Saharan Africa.

Browse | Search : All Pubs | Next