Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Smock discusses the "new American family" on NPR

Pfeffer and colleagues re-examine impacts of community college attendance

Frey explains the minority-majority remapping of America

Highlights

Apply for 2-year NICHD Postdoctoral Fellowships that begin September 2015

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Next Brown Bag

Monday, Dec 1
Linda Waite, Health & Well-Being of Adults over 60

Probabilistic Choice (Models) as a Result of Balancing Multiple Goals

Publication Abstract

Swait Jr, Joffre Dan, and A.A.J. Marley. 2013. "Probabilistic Choice (Models) as a Result of Balancing Multiple Goals." Journal of Mathematical Psychology, 57(1-2): 1-14.

We conceptualize probabilistic choice as the result of the simultaneous pursuit of multiple goals in a vector optimization representation, which is reduced to a scalar optimization that implies goal balancing. The majority of prior theoretical and empirical work on such probabilistic choice is based on random utility models, the most basic of which assume that each choice option has a valuation that has a deterministic (systematic) component plus a random component determined by some specified distribution. An alternate approach to probabilistic choice has considered maximization of one quantity (e.g., utility), subject to constraints on one or more other quantities (e.g., cost). The multiple goal perspective integrates the results regarding the well-studied multinomial logit model of probabilistic choice that has been derived from each of the above approaches; extends the results to other models in the generalized extreme value (GEV) class; and relates them to recent axiomatic work on the utility of gambling.

DOI:10.1016/j.jmp.2013.03.003 (Full Text)

Browse | Search : All Pubs | Next