Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Yang says remittances from workers abroad increase educational attainment for children

Kimball's failed replication of Reinhart-Rogoff finding cited in argument for tempered public response to social science research results

Edin and Shaefer's book on destitute families in America reviewed in NYT

Highlights

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Next Brown Bag

Monday, Oct 12
Joe Grengs, Policy & Planning for Social Equity in Transportation

Probabilistic Choice (Models) as a Result of Balancing Multiple Goals

Publication Abstract

Swait Jr, Joffre Dan, and A.A.J. Marley. 2013. "Probabilistic Choice (Models) as a Result of Balancing Multiple Goals." Journal of Mathematical Psychology, 57(1-2): 1-14.

We conceptualize probabilistic choice as the result of the simultaneous pursuit of multiple goals in a vector optimization representation, which is reduced to a scalar optimization that implies goal balancing. The majority of prior theoretical and empirical work on such probabilistic choice is based on random utility models, the most basic of which assume that each choice option has a valuation that has a deterministic (systematic) component plus a random component determined by some specified distribution. An alternate approach to probabilistic choice has considered maximization of one quantity (e.g., utility), subject to constraints on one or more other quantities (e.g., cost). The multiple goal perspective integrates the results regarding the well-studied multinomial logit model of probabilistic choice that has been derived from each of the above approaches; extends the results to other models in the generalized extreme value (GEV) class; and relates them to recent axiomatic work on the utility of gambling.

DOI:10.1016/j.jmp.2013.03.003 (Full Text)

Browse | Search : All Pubs | Next