Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Stephenson assessing in-home HIV testing and counseling for male couples

Thompson says mass incarceration causes collapse of Detroit neighborhoods

Liberal-conservative gap by education level growing in U.S.

Highlights

Maggie Levenstein named director of ISR's Inter-university Consortium for Political and Social Research

Arline Geronimus receives 2016 Harold R. Johnson Diversity Service Award

PSC spring 2016 newsletter: Kristin Seefeldt, Brady West, newly funded projects, ISR Runs for Bob, and more

AAUP reports on faculty compensation by category, affiliation, and academic rank

Next Brown Bag

PSC Brown Bags
will resume fall 2016

Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models

Publication Abstract

Huang, Xiaobi, Michael R. Elliott, and Sioban D. Harlow. 2014. "Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models." Journal of the Royal Statistical Society: Series C (Applied Statistics), 63(3): 445-466.

As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to model jointly both the mean and the variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery and failure to report. We integrate multiple imputation and time-to-event modelling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women's menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way towards increasing use of joint mean-variance models to predict health outcomes and to understand disease processes better.

DOI:10.1111/rssc.12044 (Full Text)

PMCID: PMC3979630. (Pub Med Central)

Browse | Search : All Pubs | Next