Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Eisenberg says college athletes much less likely than other students to seek help with mental health conditions

Mitchell finds children who lose fathers suffer at cellular level

Seefeldt says hard work alone won't allow poor to reach middle-class status in America

More News

Highlights

Neal Krause wins GSA's Robert Kleemeier Award

U-M awarded $58 million to develop ideas for preventing and treating health problems

Bailey, Eisenberg , and Fomby promoted at PSC

Former PSC trainee Eric Chyn wins PAA's Dorothy S. Thomas Award for best paper

More Highlights

Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models

Publication Abstract

Huang, Xiaobi, Michael R. Elliott, and Sioban D. Harlow. 2014. "Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models." Journal of the Royal Statistical Society: Series C (Applied Statistics), 63(3): 445-466.

As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to model jointly both the mean and the variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery and failure to report. We integrate multiple imputation and time-to-event modelling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women's menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way towards increasing use of joint mean-variance models to predict health outcomes and to understand disease processes better.

DOI:10.1111/rssc.12044 (Full Text)

PMCID: PMC3979630. (Pub Med Central)

Browse | Search : All Pubs | Next