Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Weir's 2009 report on NFL brain injuries got more attention than neurological findings published in 2005

Edin and Shaefer's book a call to action for Americans to deal with poverty

Weir says pain may underlie rise in suicide and substance-related deaths among white middle-aged Americans


MCubed opens for new round of seed funding, November 4-18

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

John Knodel honored by Thailand's Chulalongkorn University

Next Brown Bag

Monday, Dec 7 at noon, 6050 ISR-Thompson
Daniel Eisenberg, "Healthy Minds Network: Mental Health among College-Age Populations"

Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models

Publication Abstract

Huang, Xiaobi, Michael R. Elliott, and Sioban D. Harlow. 2014. "Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models." Journal of the Royal Statistical Society C: Applied Statistics, 63(3): 445-466.

As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to model jointly both the mean and the variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery and failure to report. We integrate multiple imputation and time-to-event modelling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women's menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way towards increasing use of joint mean-variance models to predict health outcomes and to understand disease processes better.

DOI:10.1111/rssc.12044 (Full Text)

PMCID: PMC3979630. (Pub Med Central)

Browse | Search : All Pubs | Next