Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Sastry's 10-year study of New Orleans Katrina evacuees shows demographic differences between returning and nonreturning

Stafford says less educated, smaller investors more likely to sell off stock and lock in losses during market downturn

Chen says job fit, job happiness can be achieved over time

Highlights

Deirdre Bloome wins ASA award for work on racial inequality and intergenerational transmission

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Next Brown Bag

Monday, Oct 12
Joe Grengs, Policy & Planning for Social Equity in Transportation

Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models

Publication Abstract

Huang, Xiaobi, Michael R. Elliott, and Sioban D. Harlow. 2014. "Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models." Journal of the Royal Statistical Society C: Applied Statistics, 63(3): 445-466.

As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to model jointly both the mean and the variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery and failure to report. We integrate multiple imputation and time-to-event modelling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women's menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way towards increasing use of joint mean-variance models to predict health outcomes and to understand disease processes better.

DOI:10.1111/rssc.12044 (Full Text)

PMCID: PMC3979630. (Pub Med Central)

Browse | Search : All Pubs | Next