Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey's Scenario F simulation mentioned in account of the Democratic Party's tribulations

U-M Poverty Solutions funds nine projects

Dynarski says NY's Excelsior Scholarship Program could crowd out low-income and minority students

More News

Highlights

Workshops on EndNote, NIH reporting, and publication altmetrics, Jan 26 through Feb 7, ISR

2017 PAA Annual Meeting, April 27-29, Chicago

NIH funding opportunity: Etiology of Health Disparities and Health Advantages among Immigrant Populations (R01 and R21), open Jan 2017

Russell Sage 2017 Summer Institute in Computational Social Science, June 18-July 1. Application deadline Feb 17.

More Highlights

Next Brown Bag

Mon, Jan 23, 2017 at noon:
Decline of cash assistance and child well-being, Luke Shaefer

Colter Mitchell photo

Social disadvantage, genetic sensitivity, and children’s telomere length

Publication Abstract

Mitchell, Colter, John Hobcraft, Sara McLanahan, Susan Rutherford Siegel, Arthur Berg, Jeanne Brooks-Gunn, Irwin Garfinkel, and Daniel Notterman. 2014. "Social disadvantage, genetic sensitivity, and children’s telomere length." Proceedings of the National Academy of Sciences of the United States of America, 111(16): 5944-5949.

Disadvantaged social environments are associated with adverse health outcomes. This has been attributed, in part, to chronic stress. Telomere length (TL) has been used as a biomarker of chronic stress: TL is shorter in adults in a variety of contexts, including disadvantaged social standing and depression. Using data from 40, 9-year-old boys participating in the Fragile Families and Child Wellbeing Study, we show that those who grow up in highly disadvantaged environments have shorter telomeres than boys who grow up in highly advantaged environments. We also find that the association between the social environment and TL is moderated by genetic variation within the serotonin and dopamine pathways. Boys with the highest genetic sensitivity scores had the shortest TL when exposed to disadvantaged environments and the longest TL when exposed to advantaged environments. To our knowledge, this report is the first to document a gene–social environment interaction for TL, a biomarker of stress exposure.

DOI:10.1073/pnas.1404293111 (Full Text)

PMCID: PMC4000782. (Pub Med Central)

AltMetrics Info

Country of focus: United States of America.

Browse | Search : All Pubs | Next