Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Owen-Smith says universities must demonstrate value of higher education

Armstrong says USC's removal of questions from a required Title IX training module may reflect student-administration relations

Fomby finds living with step- or half-siblings linked to higher aggression among 5 year olds

Highlights

PRB training program in policy communication for pre-docs. Application deadline, 2.28.2016

Call for proposals: PSID small grants for research on life course impacts on later life wellbeing

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

Next Brown Bag

Monday, Feb 1 at noon, 6050 ISR-Thompson
Sarah Miller

Colter Mitchell photo

Social disadvantage, genetic sensitivity, and children’s telomere length

Publication Abstract

Mitchell, Colter, John Hobcraft, Sara McLanahan, Susan Rutherford Siegel, Arthur Berg, Jeanne Brooks-Gunn, Irwin Garfinkel, and Daniel Notterman. 2014. "Social disadvantage, genetic sensitivity, and children’s telomere length." Proceedings of the National Academy of Sciences of the United States of America, 111(16): 5944-5949.

Disadvantaged social environments are associated with adverse health outcomes. This has been attributed, in part, to chronic stress. Telomere length (TL) has been used as a biomarker of chronic stress: TL is shorter in adults in a variety of contexts, including disadvantaged social standing and depression. Using data from 40, 9-year-old boys participating in the Fragile Families and Child Wellbeing Study, we show that those who grow up in highly disadvantaged environments have shorter telomeres than boys who grow up in highly advantaged environments. We also find that the association between the social environment and TL is moderated by genetic variation within the serotonin and dopamine pathways. Boys with the highest genetic sensitivity scores had the shortest TL when exposed to disadvantaged environments and the longest TL when exposed to advantaged environments. To our knowledge, this report is the first to document a gene–social environment interaction for TL, a biomarker of stress exposure.

DOI:10.1073/pnas.1404293111 (Full Text)

PMCID: PMC4000782. (Pub Med Central)

AltMetrics Info

Country of focus: United States of America.

Browse | Search : All Pubs | Next