Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Neidert says decreasing relevance of marriage reflected in growing percent of one-person households

House says resolving socioeconomic inequalities, not spending more on health care, will improve health in America

Kusunoki, Hall, and Barber find obese teen girls less likely to use birth control

Highlights

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Elizabeth Bruch wins ASA award for paper in mathematical sociology

Next Brown Bag

PSC Brown Bags will be back fall 2015


Colter Mitchell photo

Social disadvantage, genetic sensitivity, and children’s telomere length

Publication Abstract

Mitchell, Colter, John Hobcraft, Sara McLanahan, Susan Rutherford Siegel, Arthur Berg, Jeanne Brooks-Gunn, Irwin Garfinkel, and Daniel Notterman. 2014. "Social disadvantage, genetic sensitivity, and children’s telomere length." Proceedings of the National Academy of Sciences, 111(16): 5944-5949.

Disadvantaged social environments are associated with adverse health outcomes. This has been attributed, in part, to chronic stress. Telomere length (TL) has been used as a biomarker of chronic stress: TL is shorter in adults in a variety of contexts, including disadvantaged social standing and depression. Using data from 40, 9-year-old boys participating in the Fragile Families and Child Wellbeing Study, we show that those who grow up in highly disadvantaged environments have shorter telomeres than boys who grow up in highly advantaged environments. We also find that the association between the social environment and TL is moderated by genetic variation within the serotonin and dopamine pathways. Boys with the highest genetic sensitivity scores had the shortest TL when exposed to disadvantaged environments and the longest TL when exposed to advantaged environments. To our knowledge, this report is the first to document a gene–social environment interaction for TL, a biomarker of stress exposure.

DOI:10.1073/pnas.1404293111 (Full Text)

PMCID: PMC4000782. (Pub Med Central)

AltMetrics Info

Country of focus: United States of America.

Browse | Search : All Pubs | Next