Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Shaefer says drop child tax credit in favor of universal, direct investment in American children

Buchmueller breaks down partisan views on Obamacare

ISR's Conrad says mobile phone polling faces non-response bias

More News


Gonzalez, Alter, and Dinov win NSF "Big Data Spokes" award for neuroscience network

Post-doc Melanie Wasserman wins dissertation award from Upjohn Institute

ISR kicks off DE&I initiative with lunchtime presentation: Oct 13, noon, 1430 ISR Thompson

U-M ranked #4 in USN&WR's top public universities

More Highlights

Next Brown Bag

Mon, Oct 24 at noon:
Academic innovation & the global public research university, James Hilton

Sampling strategies for batch mode reinforcement learning

Publication Abstract

Fonteneau, Raphael, Susan A. Murphy, L. Wehenkel, and D. Ernst. 2013. "Sampling strategies for batch mode reinforcement learning." Revue d'Intelligence Artificielle, 27(2): 171-194.

We propose two strategies for experiment selection in the context of batch mode reinforcement learning. The first strategy is based on the idea that the most interesting experiments to carry out at some stage are those that are the most liable to falsify the current hypothesis about the optimal control policy. We cast this idea in a context where a policy learning algorithm and a model identification method are given a priori. The second strategy exploits recently published methods for computing bounds on the return of control policies from a set of trajectories in order to sample the state-action space so as to be able to discriminate between optimal and non-optimal policies. Both strategies are experimentally validated, showing promising results. © 2013 Lavoisier.

DOI:10.3166/RIA.27.171-194 (Full Text)

Browse | Search : All Pubs | Next