Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Lam says tightening global labor market good for American workers

Johnston says e-cigs may reverse two-decades of progress on smoking reduction

Mueller-Smith finds incarceration increases the likelihood of committing more, and more serious, crimes

Highlights

Bob Willis awarded 2015 Jacob Mincer Award for Lifetime Contributions to the Field of Labor Economics

David Lam is new director of Institute for Social Research

Elizabeth Bruch wins Robert Merton Prize for paper in analytic sociology

Elizabeth Bruch wins ASA award for paper in mathematical sociology

Next Brown Bag

PSC Brown Bags will be back fall 2015


Sampling strategies for batch mode reinforcement learning

Publication Abstract

Fonteneau, Raphael, Susan A. Murphy, L. Wehenkel, and D. Ernst. 2013. "Sampling strategies for batch mode reinforcement learning." Revue d'Intelligence Artificielle, 27(2): 171-194.

We propose two strategies for experiment selection in the context of batch mode reinforcement learning. The first strategy is based on the idea that the most interesting experiments to carry out at some stage are those that are the most liable to falsify the current hypothesis about the optimal control policy. We cast this idea in a context where a policy learning algorithm and a model identification method are given a priori. The second strategy exploits recently published methods for computing bounds on the return of control policies from a set of trajectories in order to sample the state-action space so as to be able to discriminate between optimal and non-optimal policies. Both strategies are experimentally validated, showing promising results. © 2013 Lavoisier.

DOI:10.3166/RIA.27.171-194 (Full Text)

Browse | Search : All Pubs | Next