Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Frey comments on why sunbelt metro area economies are still struggling

Krause says having religious friends leads to gratitude, which is associated with better health

Work by Bailey and Dynarski on growing income gap in graduation rates cited in NYT

Highlights

Find an innovative research Cube at the MCubed Symposium, Oct 9, register now

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Jeff Morenoff makes Reuters' Highly Cited Researchers list for 2014

Next Brown Bag

Monday, Oct 6
Elisha Renne (Michigan)

Sampling strategies for batch mode reinforcement learning

Publication Abstract

Fonteneau, Raphael, Susan A. Murphy, L. Wehenkel, and D. Ernst. 2013. "Sampling strategies for batch mode reinforcement learning." Revue d'Intelligence Artificielle, 27(2): 171-194.

We propose two strategies for experiment selection in the context of batch mode reinforcement learning. The first strategy is based on the idea that the most interesting experiments to carry out at some stage are those that are the most liable to falsify the current hypothesis about the optimal control policy. We cast this idea in a context where a policy learning algorithm and a model identification method are given a priori. The second strategy exploits recently published methods for computing bounds on the return of control policies from a set of trajectories in order to sample the state-action space so as to be able to discriminate between optimal and non-optimal policies. Both strategies are experimentally validated, showing promising results. © 2013 Lavoisier.

DOI:10.3166/RIA.27.171-194 (Full Text)

Browse | Search : All Pubs | Next