Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

H. Luke Shaefer and colleagues argue for a universal child allowance

Hindustan Times points out high value of H-1B visas for US innovation, welfare, and tech firm profits

Novak, Geronimus, Martinez-Cardoso: Threat of deportation harmful to immigrants' health

More News

Highlights

Heather Ann Thompson wins Pulitzer Prize for book on Attica uprising

Lam explores dimensions of the projected 4 billion increase in world population before 2100

ISR's Nick Prieur wins UMOR award for exceptional contribution to U-M's research mission

How effectively can these nations handle outside investments in health R&D?

More Highlights

Next Brown Bag

Mon, April 10, 2017, noon:
Elizabeth Bruch

Daniel Almirall photo

Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals

Publication Abstract

Almirall, Daniel, Beth Ann Griffin, Daniel F. McCaffrey, Rajeev Ramchand, Robert A. Yuen, and Susan A. Murphy. 2014. "Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals." Statistics in Medicine, 33(20): 3466-3487.

This article considers the problem of examining time-varying causal effect moderation using observational, longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in a conditional mean model for a continuous response given time-varying treatments and moderators. We present an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying substance use moderates treatment effects on future substance use. Copyright © 2013 John Wiley & Sons, Ltd.

DOI:10.1002/sim.5892 (Full Text)

PMCID: PMC4008726. (Pub Med Central)

Browse | Search : All Pubs | Next