Home > Publications . Search All . Browse All . Country . Browse PSC Pubs . PSC Report Series

PSC In The News

RSS Feed icon

Bloomberg cites MTF data in story on CDC's anti-smoking ads for e-cigarettes

Bound says notion that foreign students are displacing U.S. students "isn't right"

Prescott says online option for access to court system can help equalize justice

Highlights

U-M ranked #1 in Sociology of Population by USN&WR's "Best Graduate Schools"

PAA 2015 Annual Meeting: Preliminary program and list of UM participants

ISR addition wins LEED Gold Certification

PSC Fall 2014 Newsletter now available

Next Brown Bag

Mon, March 23
Lundberg, State Care of the Elderly & Labor Supply of Adult Children

Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals

Publication Abstract

Almirall, Daniel, Beth Ann Griffin, Daniel F. McCaffrey, Rajeev Ramchand, Robert A. Yuen, and Susan A. Murphy. 2014. "Time-varying effect moderation using the structural nested mean model: estimation using inverse-weighted regression with residuals." Statistics in Medicine, 33(20): 3466-3487.

This article considers the problem of examining time-varying causal effect moderation using observational, longitudinal data in which treatment, candidate moderators, and possible confounders are time varying. The structural nested mean model (SNMM) is used to specify the moderated time-varying causal effects of interest in a conditional mean model for a continuous response given time-varying treatments and moderators. We present an easy-to-use estimator of the SNMM that combines an existing regression-with-residuals (RR) approach with an inverse-probability-of-treatment weighting (IPTW) strategy. The RR approach has been shown to identify the moderated time-varying causal effects if the time-varying moderators are also the sole time-varying confounders. The proposed IPTW+RR approach provides estimators of the moderated time-varying causal effects in the SNMM in the presence of an additional, auxiliary set of known and measured time-varying confounders. We use a small simulation experiment to compare IPTW+RR versus the traditional regression approach and to compare small and large sample properties of asymptotic versus bootstrap estimators of the standard errors for the IPTW+RR approach. This article clarifies the distinction between time-varying moderators and time-varying confounders. We illustrate the methodology in a case study to assess if time-varying substance use moderates treatment effects on future substance use. Copyright © 2013 John Wiley & Sons, Ltd.

DOI:10.1002/sim.5892 (Full Text)

PMCID: PMC4008726. (Pub Med Central)

Browse | Search : All Pubs | Next