Home > Research . Search . Country . Browse . Small Grants

PSC In The News

RSS Feed icon

Singh discusses her research in India on infertility

Johnston concerned declines in teen smoking threatened by e-cigarettes

Johnston says decreasing marijuana use among teens not easily explained

Highlights

Apply for 2-year NICHD Postdoctoral Fellowships that begin September 2015

PSC Fall 2014 Newsletter now available

Martha Bailey and Nicolas Duquette win Cole Prize for article on War on Poverty

Michigan's graduate sociology program tied for 4th with Stanford in USN&WR rankings

Next Brown Bag

Monday, Jan 12
Filiz Garip, Changing Dynamics of Mexico-U.S. Migration

Modeling the Impact and Costs of Radon Policy for Lung Cancer Control

a PSC Research Project [ARCHIVE DISPLAY]

Investigators:   David Mendez, Paul Courant, Paula M. Lantz, Martin A. Philbert, Kenneth E. Warner

Trends in lung cancer incidence and mortality have followed trends in tobacco use, as cigarette smoking is estimated to cause approximately 90 percent of lung cancer deaths in men and 80 percent in women. However, exposure to radon-an odorless radioactive gas that can become trapped in homes-is considered the second leading cause of lung cancer. A very important aspect of the relationship between radon and lung cancer is the strong interaction between radon exposure and smoking in lung cancer risk. The EPA estimates that 86 percent of radon-related lung cancer deaths are in ever-smokers. As such, the vast majority of the public health burden of radon is among smokers and former smokers. The overall goal of our proposed research is to elucidate the potential impact and costs of a selected set of public policies aimed at reducing the burden of radon-induced lung cancer in the U.S., taking into account the strong interaction between radon exposure and smoking, and the fact that we are currently in an era of decreased smoking. Our specific aims are as follows: 1) to modify an existing population-based dynamic model that predicts tobacco use, radon exposure, and lung cancer mortality by incorporating revised structure and parameters from the National Academy of Sciences' Biological Effects of Ionizing Radiation VI model; 2) to use the modified model to estimate the impact that radon had on lung cancer mortality during the time period of 1980-2005, taking into account decreases in smoking among adults over this time; 3) to use the modified radon model to conduct a variety of policy simulation exercises regarding both radon testing/remediation and tobacco control (including the targeting of radon education/testing/remediation at smokers); and 4) to conduct cost-effectiveness analyses of a selected set of policy approaches to reducing lung cancer mortality, comparing policy strategies focused on smoking cessation and those focused on reducing exposure to radon. Our work seeks to add clarity to a number of questions that are central to sound public policy regarding radon but have yet to be elucidated. At the center of our proposed research is the need for policy research and discourse to better explicate the implications of the interaction between radon exposure and smoking for lung cancer. In sum, our work will help to elucidate the relative impact and cost-effectiveness of residential radon remediation strategies versus smoking reductions on radon-related lung cancer in the 21st century.

Funding Period: 04/01/2007 to 03/31/2010

Country of Focus: USA

This PSC Archive record is displayed for historical reference.

Search . Browse