Home > Research . Search . Country . Browse . Small Grants

PSC In The News

RSS Feed icon

Weir's 2009 report on NFL brain injuries got more attention than neurological findings published in 2005

Edin and Shaefer's book a call to action for Americans to deal with poverty

Weir says pain may underlie rise in suicide and substance-related deaths among white middle-aged Americans


MCubed opens for new round of seed funding, November 4-18

PSC News, fall 2015 now available

Barbara Anderson appointed chair of Census Scientific Advisory Committee

John Knodel honored by Thailand's Chulalongkorn University

Next Brown Bag

Monday, Dec 7 at noon, 6050 ISR-Thompson
Daniel Eisenberg, "Healthy Minds Network: Mental Health among College-Age Populations"

Michael R. Elliott photo

Marginal Structural Modeling: Towards Recovering Casual Estimates of Neighborhood Poverty and Mortality

a PSC Research Project [ARCHIVE DISPLAY]

Investigators:   Michael R. Elliott, Ana Diez Roux, Hal Morgenstern

The disparities in the distribution of goods and services, and hazards and opportunities across space are increasing, underscoring the growing connection between place and health. Although ample evidence confirms that living in an economically disadvantaged neighborhood is associated with adverse health outcomes, the reliance on cross-sectional data and inadequate attention to two main sources of bias make causal inferences problematic. Residents tend to sort themselves into different types of neighborhoods based on a multitude of characteristics. Not accounting for all characteristics that are correlated to both the outcome and neighborhood context would likely lead to over-estimations of neighborhood effects. Because regression models cannot possibly account for all relevant factors, the strong possibility of unobserved heterogeneity make neighborhood effect studies open to criticisms of omitted variable bias. Yet, at the same time, neighborhood effect studies are also just as likely to be susceptible to bias due to overadjustment.

Many factors that are controlled for in neighborhood effect models, such as educational attainment, income, and employment, may arguably have been influenced by past neighborhood context. Adjusting for these factors eliminate possible critical pathways through which neighborhoods affect health, likely yielding overly conservative estimates of neighborhood effects. These two sources of bias, working in opposing directions, have plagued extant neighborhood-health research; consequently, results from current research yield tenuous and ambiguous inferences. This proposed project will use novel analytical methods and longitudinal data from an existing observational study to address the two major limitations described above and recover causal estimates of neighborhood poverty on self-rated health and mortality. We

will 1) use marginal structural modeling to appropriately adjust for covariates that are simultaneously confounders as well as mediators and 2) conduct a sensitivity analysis to determine the robustness of the neighborhood effect findings to unobserved heterogeneity. Applying this combined methodology to neighborhood-health research has the potential to significantly advance our knowledge of the relationship between place and health, yielding far reaching policy implications.

Funding Period: 09/30/2009 to 08/31/2011

This PSC Archive record is displayed for historical reference.

Search . Browse