Home > Research . Search . Country . Browse . Small Grants

PSC In The News

RSS Feed icon

Frey says China is source country of most new U.S. immigrants

Rodriguez, Geronimus, Bound and Dorling find excess mortality among blacks influences key elections

Yang comments on importance of migrant remittances to future of recipient families

Highlights

Cheng wins ASA Outstanding Graduate Student Paper Award

Hicken wins 2015 UROP Outstanding Research Mentor Award

U-M ranked #1 in Sociology of Population by USN&WR's "Best Graduate Schools"

PAA 2015 Annual Meeting: Preliminary program and list of UM participants

Next Brown Bag

Mon, May 18
Lois Verbrugge, Disability Experience & Measurement

Susan A. Murphy photo

SMART Methodology for Constructing Adaptive Intervention

a PSC Research Project

Investigators:   Susan A. Murphy, Daniel Almirall

The long term-goal of this project is to improve clinical practice and thus public health by facilitating the evidence-based construction of efficacious, individualized, adaptive interventions and treatments in drug abuse. Clinicians naturally adapt the level and type of therapy according to patient outcomes such as severity, response to past therapy, risk, stressors, adherence, preference and burden. This project will develop methods for using data to inform and enhance this adaptive clinical practice. Adaptive interventions are composed of operationalized decision rules that input patient outcomes and output recommended alterations in intensity and/or type of therapy.

The construction of adaptive interventions requires addressing questions such as: How do we best use measures of risk and other outcomes to decide when a patient's therapy needs to be intensified or stepped down? What sequence of therapies is best for achieving maximal improvement or preventing drug dependence? Should this sequence of therapies vary by patient outcomes?

To address these questions, this project develops and uses the following methodological innovations. First, the SMART experimental design methodology will be extended for use with time-varying outcomes; in particular this component will provide guidance to researchers on how to match their use of the time-varying outcome in the data analysis of SMART studies to their prevention/clinical goals. Second, this component will generalize a data analytic method from engineering and computer science for use with SMART study data so as to develop adaptive behavioral or combined behavioral-pharmacological interventions. Third, this component will provide methods for using data to develop more flexible adaptive interventions by constructing measures of confidence that can be used to ascertain when there is no evidence to discriminate between two or more successful treatments.

This work will include collaborative research with health scientists interested in constructing adaptive interventions. The goal is to accelerate the improvement of both prevention programs and treatments.

Funding Period: 07/01/2010 to 08/31/2015

Search . Browse