Home > Research . Search . Country . Browse . Small Grants

PSC In The News

RSS Feed icon

Groves keynote speaker at MIDAS symposium, Nov 15-16: "Big Data: Advancing Science, Changing the World"

Shaefer says drop child tax credit in favor of universal, direct investment in American children

Buchmueller breaks down partisan views on Obamacare

More News


Gonzalez, Alter, and Dinov win NSF "Big Data Spokes" award for neuroscience network

Post-doc Melanie Wasserman wins dissertation award from Upjohn Institute

ISR kicks off DE&I initiative with lunchtime presentation: Oct 13, noon, 1430 ISR Thompson

U-M ranked #4 in USN&WR's top public universities

More Highlights

Next Brown Bag

Mon, Oct 24 at noon:
Academic innovation & the global public research university, James Hilton

Susan A. Murphy photo

SMART Methodology for Constructing Adaptive Intervention

a PSC Research Project

Investigators:   Susan A. Murphy, Daniel Almirall

The long term-goal of this project is to improve clinical practice and thus public health by facilitating the evidence-based construction of efficacious, individualized, adaptive interventions and treatments in drug abuse. Clinicians naturally adapt the level and type of therapy according to patient outcomes such as severity, response to past therapy, risk, stressors, adherence, preference and burden. This project will develop methods for using data to inform and enhance this adaptive clinical practice. Adaptive interventions are composed of operationalized decision rules that input patient outcomes and output recommended alterations in intensity and/or type of therapy.

The construction of adaptive interventions requires addressing questions such as: How do we best use measures of risk and other outcomes to decide when a patient's therapy needs to be intensified or stepped down? What sequence of therapies is best for achieving maximal improvement or preventing drug dependence? Should this sequence of therapies vary by patient outcomes?

To address these questions, this project develops and uses the following methodological innovations. First, the SMART experimental design methodology will be extended for use with time-varying outcomes; in particular this component will provide guidance to researchers on how to match their use of the time-varying outcome in the data analysis of SMART studies to their prevention/clinical goals. Second, this component will generalize a data analytic method from engineering and computer science for use with SMART study data so as to develop adaptive behavioral or combined behavioral-pharmacological interventions. Third, this component will provide methods for using data to develop more flexible adaptive interventions by constructing measures of confidence that can be used to ascertain when there is no evidence to discriminate between two or more successful treatments.

This work will include collaborative research with health scientists interested in constructing adaptive interventions. The goal is to accelerate the improvement of both prevention programs and treatments.

Funding Period: 07/01/2010 to 08/31/2015

Search . Browse