A Guide for Selecting Statistical Techniques for Analyzing Social Science Data

Second Edition

Frank M. Andrews
Laura Klem
Terrence N. Davidson
Patrick M. O’Malley
Willard L. Rodgers

Survey Research Center
Institute for Social Research
The University of Michigan
1981
CONTENTS

Preface to the Second Edition vi

Instructions and Comments on the Use of this Guide 1

The Decision Tree: Questions and Answers Leading to Appropriate Statistics or Statistical Techniques 3

Appendix A: Sources of Further Information about Statistics Appearing in this Guide 31

Appendix B: Programs that Compute Statistics Listed in the Guide 43

Appendix C: Some New or Rarely Used Statistical Techniques 59

Glossary 63

References 67
PREFACE TO THE SECOND EDITION

This Guide is intended to help social scientists select from the vast array of statistical techniques a particular statistic or technique that can be appropriately applied in a given analysis. The Guide is addressed to practicing social scientists, data analysts, and graduate students who already have some knowledge of social science statistics and who want a systematic but highly condensed overview of many of the statistical techniques in current use and of the purposes for which each is intended.

The popularity of the first edition of the Guide leads us to hope that this substantially expanded and updated second edition will also prove useful. The original version of this Guide became available in 1971, was revised and formally published by the Institute for Social Research in 1974, and has subsequently been through four English-language printings. In addition, ISR has granted permission for editions in French (Laval University, Quebec) and Hebrew (University of Haifa). This second edition contains nearly all of the material that appeared in the first edition plus significant expansions: the number of statistical techniques included in the decision tree has been increased by almost 50 percent, with major additions being made to the coverage of multivariate analysis; a glossary that defines technical terms has been added; and Appendix B, which indicates where each statistic can be found in the output from computer software, now includes detailed information on sources in the OSIRIS, MIDAS, SPSS, SAS, and BMDP software systems. There has been a general updating throughout the Guide to incorporate many of the statistical and analytical developments of the past decade.

No guide could include all the statistics ever proposed as useful for social science data analysis and this Guide makes no claim to do so. Rather, it attempts to include—and functionally distinguish—those statistics and statistical techniques that are in common use in the social sciences, that receive significant attention in social science statistics texts, or that seem to have high potential usefulness. About 150 statistics or statistical techniques are included in this Guide.

The core of the Guide is the 28 pages of sequential questions and answers that lead the user to an appropriate technique. This is the "decision tree." Preceding the "tree" section is a short set of instructions about how to use the tree and some comments suggesting alternative strategies and certain cautions that should be kept in mind. Three appendices and a glossary follow the tree. Appendix A cites specific pages in a major reference where each statistic presented in the Guide is discussed and its means of computation is given. Appendix B identifies the programs in five major software systems and several special-purpose programs that compute given statistics. Appendix C covers some additional statistical techniques that were judged to be too new or too rarely used to merit inclusion in the decision-tree portion of the Guide but that seemed potentially useful for social science data analysis. The Guide concludes with a bibliography presenting the full reference for each cited book and article.

For assistance in the preparation of this Guide we are grateful to Christine Zupanovich and her colleagues in the ISR Word Processing Group, to Linda Stafford and her colleagues in the ISR Publishing Division, and to Eugene Leppanen and his colleagues in the University of Michigan Technical Illustration Unit. Preparation of the Guide has been partially supported by the Computer Support Group of ISR's Survey Research Center.
INSTRUCTIONS AND COMMENTS ON THE USE OF THIS GUIDE

This Guide is intended to help a data analyst select statistics or statistical techniques appropriate for the purposes and conditions of a particular analysis.

To use this Guide, start with the question on page 3, choose one of the answers presented there, and then continue along the "branches" of the decision tree as instructed. Eventually you will arrive at a box that names a statistical technique and/or a statistical measure and/or a statistical test appropriate to your situation—if one was known to the authors. Many of the technical terms used in the Guide are defined in the Glossary that begins on page 63.

The typical box contains one statistical measure (in the portion outlined by solid lines) and one statistical test (in the dotted portion). In a few cases, several different measures, or several different tests, are presented in the same box. These are essentially equivalent from a functional point of view, and comments to help you choose among them may appear in an accompanying footnote. Sometimes a measure appears without an accompanying test if none seemed particularly appropriate, and sometimes a test is listed without any measure.

Some branches of the tree terminate in boxes that are empty. These indicate situations for which the authors knew of no appropriate technique—indeed, further statistical development may be needed. If an analysis is to be performed in such a case, it will be necessary to find an alternative sequence through the decision tree or to consult another source of information.

In many analysis situations it is possible to make alternative decisions about the nature of the variables, relationships, and/or goals, and these may result in the selection of alternative final boxes. It is always possible to use techniques that require less stringent assumptions than the ones originally considered. For example, measures or tests may be used that are appropriate for a weaker scale of measurement, or techniques appropriate for non-additive situations may be used even though the variables actually form an additive system. Note also that non-additive systems can sometimes be handled using an additive technique if an appropriate combination of variables (e.g., pattern variable, product variable) has been formed. Recall also that two-point nominal variables and ranks meet the definition of intervally scaled variables.

Cautionary Comments

1. Weighted data, missing data, small sample sizes, complex sample designs, and capitalization on chance in fitting a statistical model are sources of potential problems in data analysis. The Guide does not deal with these complications. If one of these situations exists, the Guide should be used with caution. (See note 9 in Appendix C for a brief discussion...
of sampling errors from complex samples.)

2. The statistical measures in the terminal boxes are descriptive of the particular sample being examined. For some statistical measures, the value obtained will also be a good estimate of the value in the population as a whole, whereas other statistics may underestimate (or overestimate) the population value. In general, the amount of bias is relatively small and sometimes adjustments can be made for it. These adjustments are discussed in some statistics texts (but not in this Guide). If a statistic is a biased estimator of the population value, it is marked in this Guide with an asterisk.

3. In principle, a confidence interval may be placed around any statistic. It is also possible to test the significance of the difference between values of a statistic calculated for two non-overlapping groups. These procedures are not indicated in the Guide but are discussed in standard textbooks.

4. The Guide does not explicitly consider possible transformations of the data such as bracketing, using logarithms, ranking, etc. Transformations may be used to simplify analysis or to bring data into line with assumptions. (For example, it is often possible to transform scores so that the transformed scores correspond to a normal distribution, constitute an interval scale, or relate linearly to another variable.) Occasionally, it may be wise to eliminate cases with extreme values. For guidance on selecting appropriate transformations, see Kruskal (1978).

5. Common assumptions for inferences based on techniques using one or more intervally scaled variables (particularly when the intervally scaled variable is a dependent variable) include the following: first, that the observations are independent, i.e., the selection of one case for inclusion in the sample does not affect the chances of any other case being included, and the value of a variable for one case in no way affects the value of the variable for any other case; second, that the observations are drawn from a population normally distributed on the intervally scaled variable(s); and third, if more than one variable is involved, that the intervally scaled variable(s) have equal variances within categories of the other variable(s), i.e., there is homogeneity of variance. Bivariate or multivariate normality is also sometimes assumed.
THE DECISION TREE:
QUESTIONS AND ANSWERS LEADING TO APPROPRIATE STATISTICS OR STATISTICAL TECHNIQUES

STARTING POINT

How many variables does the problem involve?

One Variable

Two Variables

How do you want to treat the variables with respect to scale of measurement?

Both Interval

Both Ordinal

Both Nominal

One Interval, One Ordinal

One Interval, One Nominal

One Ordinal, One Nominal

go to page 4
goto page 6
goto page 8
goto page 9
goto page 11
goto page 12
goto page 15
goto page 16
ONE VARIABLE

How do you want to treat the variable with respect to scale of measurement?

Nominal

What do you want to know about the distribution of the variable?

Central Tendency
- Mode

Dispersion
- Relative frequency of modal value or class

Frequencies
- Relative frequencies, e.g., percentages
- Absolute frequencies

Ordinal

What do you want to know about the distribution of the variable?

Central Tendency
- Median

Dispersion
- Inter-quartile deviation

Frequencies
- Relative frequencies, e.g., percentages
- Absolute frequencies
- N-tiles

Interval

go to page 5
• One Interval variable

What do you want to know about the distribution of the variable?

Central Tendency

Dispersion

Symmetry

Peakedness

Frequencies

Normality

Do you want to treat outlying cases differently from others?

Yes

No

What is the form of the distribution?

Symmetric

Skewed

Standard deviation*

Coefficient of variation*

Range*

Skewness*

Kurtosis*

Kolmogorov-Smirnov one sample test

Lilliefors extension of the Kolmogorov-Smirnov test

Chi-square goodness-of-fit test (χ^2)

See also specific tests for skewness and kurtosis

Winsorized mean

Trimmed mean

Hampel estimate of location

Blweight mean

Relative frequencies, e.g., percentages

Absolute frequencies

N-tiles

* Biased estimator
TWO INTERVAL VARIABLES

Is a distinction made between a dependent and an independent variable?

Do you want to treat the relationship as linear?

Yes

Regression coefficient
(b or beta, \(\beta \))

F test
(F equals t)

No

Coefficients from curvilinear regression
(b or beta, \(\beta \))

F test
(F equals t for each coefficient)

Do you want to test whether the means on the two variables are equal?

Yes

Do you want to treat the relationship as linear?

Yes

t test for paired observations

No

What do you want to measure?

Agreement

Should there be a penalty if the variables do not have the same distributions?

Yes

Robinson's A

Intraclass correlation coefficient (r)

No

Krippendorff's coefficient of agreement (\(\tau \))

go to page 7

Covariation

* Biased estimator.

† The assumptions in note 5 on page 2 may apply.

‡ Beta is a standardized version of b. See "standardized coefficient" in Glossary.

§ The type of curvilinear regression referred to here is also known as polynomial regression. See note 4 in Appendix C for further discussion.

** The t test for paired observations is appropriate for parallel measures from matched cases as well as for repeated measures on a single set of cases. See "matched samples" in Glossary.
Two Interval variables • No distinction is made between a dependent and an independent variable • The relationship is to be treated as linear • Covariation is to be measured

How many of the variables are dichotomous?

None

One

Is the dichotomous variable a collapsing of a continuous variable and do you want to estimate what the correlation would be if it were continuous?

Yes

No

Pearson's product moment r^*

Do Fisher's r to Z transformation and refer critical ratio of Z to a table of the unit normal curve.

Biserial r^t

Refer critical ratio for biserial r to a table of the unit normal curve.

Pearson's product moment r (equals point biserial $r)^{*,t}$

Refer critical ratio for point biserial r to a table of the unit normal curve.

Tetrachoric r^t

Refer critical ratio for tetrachoric r to a table of the unit normal curve.

Pearson's product moment r (equals phi)*,t

Refer critical ratio for phi to a table of the unit normal curve.

Both

Are the variables collapsings of continuous variables and do you want to estimate what the correlation would be if they were continuous?

Yes

No

* Biased estimator.

t Both the tetrachoric r and the biserial r depend on a strict assumption of the normality of the continuous variables that have been dichotomized. Furthermore, the sampling error for both coefficients is large when dichotomies are extreme. Nunnally (1978, pages 135-137) advises against the use of these coefficients.

* Pearson's r in this case is mathematically equivalent to a point biserial r; the tests are almost equivalent.

*,t Pearson's r in this case is mathematically equivalent to phi (see page 9); the tests are almost equivalent.
TWO ORDINAL VARIABLES

Is a distinction made between a dependent and an independent variable?

Yes
- Somers' d
 For N greater than 10, refer the critical ratio of S to a table of the unit normal curve; for N less than or equal to 10, refer d to a table of critical values of S.

No
- What do you want to measure?
 - Agreement
 - Do you want to treat the ranks of the ordered categories as interval scales?
 - Yes
 - Spearman's rho (r_s)*
 When N is 10 or larger, refer the critical value of r_s to a table of the t distribution; for N less than 10, refer r_s to a table of critical values of r_s.
 - No
 - Kendall's tau a, tau b, or tau c (r_a, r_b, r_c)†
 Goodman and Kruskal's gamma (γ)‡
 Kim's d‡
 For N greater than 10 refer the critical ratio of S to a table of the unit normal curve; for N less than or equal to 10, refer these statistics to a table of critical values of S.

* Biased estimator.
† The data may be transformed to ranks and r_s or Krippendorff's i used. See page 6.
‡ These statistics differ with respect to how they treat pairs of cases that fall in the same category on one or both of the variables. Except in extreme cases (i.e., where any of the statistics equals 0 or 1) the absolute value of gamma will be the highest of the five statistics, tau a will be the smallest, and tau b, tau c, and Kim's d will be intermediate. This ordering is because gamma ignores all ties (when present in the data—as is usually the case), whereas the other four statistics penalize for ties in the sense of reducing the absolute value of the statistic obtained. Unlike tau b and Kim's d, tau c can attain ±1 even if the two variables do not have the same number of categories. If there are no ties on either variable the five measures are identical. See Goodman and Kruskal (1954), Kendall (1970), Kendall and Stuart (1961), Stuart (1953), and Kim (1971).
TWO NOMINAL VARIABLES

Are the variables both two-point scales?

Yes

What do you want to measure?

Symmetry

Covariation

Yule's Q

Phi (ϕ)

Fisher's exact test

Refer critical ratio of phi to a table of the unit normal curve.

Pearson chl-square (χ^2)

No

Is a distinction made between a dependent and an independent variable?

Yes

Do you want a statistic based on the number of cases in each category or on the number of cases in the modal categories?

Statistic Based on Number of Cases in Each Category

Goodman and Kruskal's tau b (τ_b)

Refer critical ratio of tau b to a table of the unit normal curve.

Statistic Based on Number of Cases in Modal Categories

Asymmetric lambda (λ_a, λ_b)

Refer critical ratio of lambda to a table of the unit normal curve.

No

Do you want a statistic based on the number of cases in each category or on the number of cases in the modal categories?

go to page 10

† In this case, McNemar's test of symmetry is equivalent to Cochran's Q.

* In this case, Yule's Q is equivalent to Goodman and Kruskal's gamma and phi is equivalent to Pearson's product moment r. In general, Q will be higher in absolute value than phi because Q ignores pairs of cases which fall in the same category on one or both of the variables.

Pearson chl-squares can be corrected for continuity (Yate's correction) but this is controversial. See Camilli and Hopkins (1978).

** McNemar's test of symmetry is appropriate for parallel measures from matched cases as well as for repeated measures on a single set of cases. See "matched samples" in Glossary.
- Two nominal variables
- At least one of the variables is not a two-point scale
- No distinction is made between a dependent and an independent variable

What do you want to measure?

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Symmetry</th>
<th>Covariation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Should there be a penalty if the variables do not have the same distributions?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Scott's coefficient of agreement, pI (x)</td>
<td>Cohen's agreement coefficients, kappas (k's)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refer critical ratios for Cohen's k's to a table of the unit normal curve.</td>
</tr>
</tbody>
</table>

Statistic Based on Number of Cases in Each Category

- Do you want a statistic whose upper limit varies with the number of categories and whose upper limit may be less than one?
- **Yes**
 - Contingency coefficient (C)
 - Pearson chi-square (x^2)
- **No**
 - Cramér's V
 - Pearson chi-square (x^2)^\text{'}

Statistic Based on Number of Cases in Modal Categories

- Symmetric lambda (\lambda_{AB})
- Refer critical ratio of symmetric lambda to a table of the unit normal curve.

1 Pearson chi-squares can be corrected for continuity but this is controversial. See Bradley et al. (1979).

McNemar's test of symmetry is appropriate for parallel measures from matched cases as well as for repeated measures on a single set of cases. See "matched samples" in Glossary.
TWO VARIABLES: ONE INTERVAL, ONE ORDINAL

Is the ordinal variable a two-point variable?

Yes

No

Do you want to treat the ordinal variable as if it were based on an underlying normally distributed interval variable?

Yes

Jaspen's coefficient of multserial correlation

Do Fisher's r to Z transformation and refer critical ratio of Z to a table of the unit normal curve.

No

Do you want to treat the ordinal variable as if it were a monotonic transformation of an underlying interval variable?

Yes

Mayer and Robinson's M_y

Do Fisher's r to Z transformation and refer critical ratio of Z to a table of the unit normal curve.

No

* Biased estimator.

† Jaspen's coefficient is the product moment correlation between the interval variable and a transformation of the ordinal variable. The magnitude of this statistic is sensitive to the assumption of normality.

‡ Any two-point variable meets the criteria for an intervally scaled variable.
TWO VARIABLES: ONE INTERVAL, ONE NOMINAL

Is the interval variable dependent?

Yes

Do you want a measure of the strength of relationship between the variables or a test of the statistical significance of differences between groups?

Measure of Strength

Do you want to describe the relationship in your data or to estimate it in the population which you have sampled?

- Eta² (η²)
- F test
- Omega² (ω²)
- Intraclass correlation coefficient (ri)
- Kelley's epsilon² (ε²)

Estimate

Test of Significance

Is the nominal variable a two-point variable?

No

- go to page 13

Yes

- go to page 6

* Biased estimator.

† The assumptions in note 5 on page 2 may apply.

‡ If the nominal variable is a two-point scale, the t test is an alternative (because in such case F equals t).

Ω Omega² applies to the fixed effects model, and the intraclass correlation coefficient applies to the random effects model. Thus omega² should be used if you want to make inferences only about the specific categories of the nominal variable which appear in the data, whereas the intraclass correlation coefficient should be used if you view the particular categories that appear in the data as a random sample from a larger set of potential categories and you want to make inferences about the total set of potential categories. (See Hays, 1973, page 525; Hays denotes the intraclass correlation as ρ, rather than ri.) In most situations it is more appropriate to use the fixed effects model, i.e., omega². Kelley’s epsilon² is used for exactly the same purpose as Hays’ omega² but differs very slightly in computation. Hays’ omega² was apparently developed independently of Kelley’s earlier statistic. Kelley’s epsilon² is precisely equivalent to eta², after eta² is adjusted for degrees of freedom. See Glass and Hackett (1969), Kelley (1935), and Hays (1973; page 485).

§ Any two-point variable meets the criteria for an intervally scaled variable.
There are two variables, one interval and the other nominal. The interval variable is dependent. Statistical significance of differences between groups is to be tested.

Are you willing to assume that the interval variable is normally distributed in the population?

- Yes
- No

Do you want to test the equality of means or of variances of the dependent variable for different categories of the independent variable?

- Means
- Variances

Do you want to assume homoscedasticity across levels of the independent variable?

- Yes
- No

Is the nominal variable a two-point scale?

- Yes
- No

Analysis of variance

- F test
- Welch statistic
- Brown-Forsythe statistic

Analysis of variance

- t test

Analysis of variance

- Levene's W
Are the cases (e.g., people) in one category of the nominal variable matched to the cases in the other category of that variable?**

Yes

Within each category of the nominal variable, is the distribution of the interval variable symmetric?

Yes

Walsh test

No

Randomization test for matched samples**

No

Randomization test for independent samples**

Are the cases (e.g., people) in one category of the nominal variable matched to the cases in each of the other categories of that variable?**

Yes

No

Randomization test for two independent samples**

1 The assumptions in note 5 on page 2 may apply.

2 If the nominal variable is a two-point scale, the t test is an alternative (because in such case F equals t).†

3 If the nominal variable is a two-point scale, a special form of the t test may be used. (See Hays, 1973, pp. 404 and 410.)

** See “matched samples” in Glossary.

†† In practice, randomization tests are usually only applied when the number of cases is very small. With larger N's the interval variable is generally treated as an ordinal variable.
TWO VARIABLES: ONE ORDINAL, ONE NOMINAL

Is a distinction made between a dependent and an independent variable?

Yes

Is the ordinal variable dependent?

Yes

Is the nominal variable two-point?

Yes

Are the cases (e.g., people) in one category of the nominal variable matched to the cases in the other category of that variable?**

Yes

Sign test
Wilcoxon signed-rank test

No

Somers' d
For significance of Somers' d with N greater than 10, refer the critical ratio of S to a table of the unit normal curve; for N less than or equal to 10, refer d to a table of critical values of S.

Median test
Mann-Whitney U test
Kolmogorov-Smirnov two sample test
Runs test

No

Are the cases (e.g., people) in one category of the nominal variable matched to the cases in each of the other categories of that variable?**

Yes

Friedman test
Kruskal-Wallis test

No

Freeman's coefficient of differentiation (Ω)**

Median test (for more than 2 groups)

The nominal variable may be treated as ordinal (in which case go to page 8) or as interval (in which case go to page 11).

** See "matched samples" in Glossary.
MORE THAN TWO VARIABLES

Is a distinction made between dependent and independent variables?

Yes

Is there more than one dependent variable?

Yes

Do you want to statistically remove the linear effects of one or more covariates from the dependent variable?

Yes

Do you want to treat the relationships involving the covariate(s) as additive?†

No

Do you want to treat the relationships among the variables as additive?†

Yes

Do you want to treat the dependent variable and the covariate(s) as interval and the independent variable(s) as nominal?

Yes

Covariance analysis†

F test†

No

No

go to page 17

No

go to pages 27–28

No

go to page 25

† The assumptions in note 5 on page 2 may apply.

† Nonadditivity can be represented within additive techniques by using a pattern variable or a product variable. Another possibility is to analyze subgroups separately. See Glossary.

† Some analysis of covariance techniques assume statistical independence between all pairs of independent variables.
More than two variables • No distinction is made between dependent and independent variables

Do you want to measure agreement?

Yes

How do you want to treat the variables with respect to scale of measurement?

All Nominal

All Ordinal

All Interval

Light's agreement coefficient (k_m)

Refer critical ratio of k_m to a table of the unit normal curve.

Intraclass correlation coefficient (r_i)*

Robinson's A

F test

Kendall's coefficient of concordance (W)

For N greater than 7, use χ^2 test for W; for N less than or equal to 7, refer to a table of critical values of W.

No

Do you want to test whether the means (or proportions) on all variables are equal?

Yes

Are all the variables two-point?

Yes

Do you want to treat the relationships among the variables as additive?†

Yes

Analysis of variance with repeated measures

F test

Cochran's Q**

No

Go to page 18

No

Do you want to treat all of the variables as nominal?†

Yes

Multidimensional contingency table analysis

Chi-square tests

No

See note 3 in Appendix C.

† The assumptions in note 5 on page 2 may apply.

‡ Nonadditivity can be represented within additive techniques by using a pattern variable or a product variable. Another possibility is to analyze subgroups separately. See Glossary.

§ There are various chi-square test statistics including Pearson, maximum likelihood, and Neyman.

** Cochran's Q is appropriate for parallel measures from matched cases as well as for repeated measures on a single set of cases. See "matched samples" in Glossary.
(continued from page 17)

More than two variables • No distinction is made between dependent and independent variables • Relationships are to be treated as additive

Do you want to analyze patterns existing among variables or among individual cases (e.g., persons)?

Variables

Do you have two or more sets of variables and do you want to measure the strength of the association between those sets?

Yes

- Canonical correlation
- Wilks' lambda
- Roy's greatest root criterion
- Pillai-Bartlett V

No

Cases

Do you want to treat the variables as measured on interval scales and relationships among them as linear?

Yes

Clusters techniques such as single linkage, complete linkage, average linkage, K-means

No

One Group

Two or More Groups

Does the analysis involve (a) one group of individual cases or (b) two or more groups?

Yes

No

- Q-type factor analysis

† The assumptions in note 5 on page 2 may apply.

‡ "Two or more groups" may mean distinct sets of individuals, a set of individuals observed on two or more occasions, etc.
More than two variables • No distinction is made between dependent and independent variables • Relationships are to be treated as additive • Patterns among variables are to be analyzed • One group of individuals

Do you want to explore covariation among the variables (e.g., to examine their relationships to underlying dimensions) or do you want to find clusters of variables that are more strongly related to one another than to the remaining variables?

Explore Covariation

- Do you want to treat the variables as measured on interval scales and the relationships among them as linear?
 - **Yes**
 - Do you want to explore the relationships among the set of variables or do you want to compare the pattern of the relationships with a prespecified pattern?
 - **Yes**
 - **No**
 - **No**
 - **Clustering techniques** such as single linkage, complete linkage, average linkage, K-means

Find Clusters

- **Yes**
- **No**
Explore Relationships

Do you want to preserve the metric units in which the variables were measured or to standardize them by the observed variance of each?

- **Yes**
 - Non-metric multidimensional scaling techniques

- **No**
 - Do you want to treat all variables as nominal?

 - **Yes**
 - Multidimensional contingency table analysis

 - **No**
 - Original Metric

Compare Patterns

Do you want to preserve the metric units in which the variables were measured or to standardize them by the observed variance of each?

- **Standardize**
 - Confirmatory factor analysis of variance-covariance matrix
 - Maximum likelihood chi-square (χ^2)

- **Original Metric**
 - Factor analysis of correlation matrix

- **Standardize**
 - Confirmatory factor analysis of a standardized variance-covariance matrix
 - Maximum likelihood chi-square (χ^2)

- **Original Metric**
 - Factor analysis of variance-covariance matrix

1. The assumptions in note 5 on page 2 may apply.

2. The variables should be standardized using the combined groups (i.e., the observed group and the prespecified pattern) as a reference. (Depending on the problem, this may or may not be equivalent to using the correlation matrix for the observed group.) See "standardized variable" in Glossary.

3. See note 3 in Appendix C.

4. There are various chi-square test statistics including Pearson, maximum likelihood, and Neyman.
- More than two variables
- No distinction is made between dependent and independent variables
- Relationships are to be treated as additive
- Patterns among variables are to be analyzed
- Two or more groups of individuals

Do you want to explore the relationships among a set of variables in two or more groups simultaneously or do you want to compare the similarity of the patterns of the relationships among a set of variables either (a) across two or more groups or (b) with a prespecified pattern?

Explore Relationships

Do you want to treat the variables as measured on interval scales and the relationships among them as linear?

Yes

Three-mode factor analysis

No

Three-way non-metric multidimensional scaling techniques

Compare Patterns

Do you want to preserve the metric units in which the variables were measured or to standardize them by the observed variance of each?

Standardize

Confirmatory factor analysis of standardized variance-covariance matrices

Maximum likelihood chi-square (χ^2)

Original Metric

Confirmatory factor analysis of variance-covariance matrices

Maximum likelihood chi-square (χ^2)

1 The assumptions in note 5 on page 2 may apply.

2 "Two or more groups" may mean distinct sets of Individuals, a set of individuals observed on two or more occasions, etc.

3 The variables should be standardized using the combined groups as a reference group. (This is not the same as using the correlation matrices for the separate groups.) See "standardized variable" in Glossary.
• More than two variables • A distinction is made between dependent and independent variables • There is more than one dependent variable

Is there more than one independent variable?

Yes

Do you want to treat the relationships among the variables as additive?†

Yes

No

Do you want to treat all the dependent variables as interval?

Yes

No

Do you want to test only whether the vectors of means are equal for all categories of the independent variables?

Yes

No

Nonadditivity can be represented within additive techniques by using a pattern variable or a product variable. Another possibility is to analyze subgroups separately. See Glossary.

Some multivariate analysis of variance techniques assume statistical independence between all pairs of independent variables.

If the independent variable is a two-point scale, Hotelling’s T^2 is an alternative (because in such cases the T^2 test is equivalent to the A-test). Mahalanobis’ D^2 is another alternative in such a case.

The assumptions in note 5 on page 2 may apply.
• A distinction is made between dependent and independent variables. There is more than one dependent variable and more than one independent variable. Relationships among the variables are to be treated as additive.

Do you want to treat all the dependent and independent variables as interval?

- Yes
- No

Do you want to treat all the relationships as linear?

- Yes
- No

Does the analysis include at least one intervening variable?

- Yes
- No

Does your analysis include at least one latent (i.e., unmeasured) variable?

- Yes
- No

- Structural models with latent variables
- Path analysis
- Canonical correlation
 - Wilks' lambda
 - Roy's greatest root criterion
 - Pillai-Bartlett V

The assumptions in note 5 on page 2 may apply.

See Glossary.
A distinction is made between dependent and independent variables. There is more than one dependent variable and more than one independent variable. Relationships among the variables are not to be treated as additive. All the dependent variables are interval.

Do you want to treat all the independent variables as nominal and test a set of prespecified relationships?

Yes

- Multivariate analysis of variance
 - Wilks' lambda
 - Roy's greatest root criterion
 - Pillai-Bartlett V

No

Do you want to treat all the independent variables as nominal or ordinal and do you want to do an empirical search for strong relationships?

Yes

- Multivariate binary segmentation techniques

No

1 The assumptions in note 5 on page 2 may apply.

2 Some multivariate analysis of variance techniques assume statistical independence between all pairs of independent variables.
- More than two variables
- A distinction is made between dependent and independent variables
- There is one dependent variable
- No covariate is used to remove linear effects
- Relationships among the variables are not to be treated as additive

Do you want to do an empirical search for strong relationships or to test a set of prespecified relationships?

Search

How do you want to treat the variables with respect to scale of measurement?

- Dependent: Nominal or Interval
 - Independent: Nominal or Ordinal
 - Binary segmentation techniques
 - Other

Test

Do you want to treat the dependent variable as ordinal?

- Yes
 - Do you want to treat all the independent variables as nominal?
 - Yes
 - Multidimensional contingency table analysis based on the cumulative logistic distribution
 - No
 - Chi-square tests
 - No

* This technique depends on a strict assumption of the normality of the continuous variable which is represented by the ordinal dependent variable.

* There are various chi-square test statistics including Pearson, maximum likelihood, and Neyman.
More than two variables
• A distinction is made between dependent and independent variables.
• There is one dependent variable.
• No covariate is used to remove linear effects.
• Relationships among the variables are not to be treated as additive.
• A set of prespecified relationships is to be tested.
• The dependent variable is not to be treated as ordinal.

Do you want to treat any of the independent variables as ordinal?

Yes

No

Do you want to treat the dependent variable as interval and all the independent variables as nominal and do you want to assume homoscedasticity?

Yes

No

Do you want to treat all of the variables as nominal?

Yes

No

Do you want to do a hierarchical analysis?

Yes

No

Multidimensional contingency table analysis

Chi-square tests

Multidimensional contingency table analysis technique allowing an unconstrained design matrix

Chi-square tests

Do you want to treat the dependent variable as interval and all of the independent variables as nominal?

Yes

No

Analysis of variance using weighted least squares

††

† The assumptions in note 5 on page 2 may apply.

†† Many analysis of variance techniques assume statistical independence between all pairs of independent variables.

† See note 3 in Appendix C.

* There are various chi-square test statistics including Pearson, maximum likelihood, and Neyman.

†† Multidimensional contingency table analysis using weighted least squares may be appropriate.
More than two variables • A distinction is made between dependent and independent variables • There is one dependent variable • No covariate is used to remove linear effects • Relationships among the variables are to be treated as additive.

How do you want to treat the dependent variable with respect to scale of measurement?

- **Nominal**
 - Do you want to treat all the independent variables as interval?
 - Yes
 - Do you want to treat the relationships among the independent variables as linear?
 - Yes
 - Multiple discriminant function
 - No
 - Wilks' lambda
 - Roy's greatest root criterion
 - Pillai-Bartlett V
 - No
 - No

- **Ordinal**
 - No

- **Interval**
 - Do you want to treat all the independent variables as interval?
 - Yes
 - Do you want to treat all the relationships as linear?
 - Yes
 - Dummy variable regression or multiple classification analysis
 - No
 - go to pages 29-30
 - No
 - Do you want to treat all of the independent variables as nominal?
 - Yes
 - Multidimensional contingency table analysis
 - No
 - Chi-square tests

{footnotes}
Is there a very high proportion in one category of the dependent variable (e.g., 90%)?

Yes

Dummy variable regression using weighted least squares or maximum likelihood, usually on a transformed dependent variable (e.g., on logits)

No

Do you want to assume homoscedasticity?

Yes

Dummy variable regression

No

Dummy variable regression or multiple classification analysis

The assumptions in note 5 on page 2 may apply.

See note 1 in Appendix C.

The type of curvilinear regression referred to here is also known as polynomial regression. See note 4 in Appendix C for further discussion.

See note 3 in Appendix C.

There are various chi-square test statistics including Pearson, maximum likelihood, and Neyman.
- More than two variables
- A distinction is made between dependent and independent variables
- There is one dependent variable
- No covariate is used to remove linear effects
- Relationships among the variables are to be treated as additive and linear
- All the variables are interval

Does the analysis include at least one intervening variable?

Yes

Does the analysis include at least one latent (i.e., unmeasured) variable?

Yes

Structural models with latent variables

No

Path analysis

No

Yes

Do you want a single measure of the relationship between the dependent variable and all the independent variables taken together?

Yes

Multiple correlation (multiple regression) ($R_1, R_2, ..., R_k$)

No

Do you want a statistic which assigns to each independent variable some of the explainable variance in the dependent variable which that independent variable shares with other independent variables?

Yes

No
Regression coefficient (b or beta, \(\beta \))

Do you want a statistic that measures the additional proportion of the total variance in the dependent variable explainable by each independent variable, over and above what the other independent variables can explain?

Yes

Part correlation

No

Do you want a statistic that measures the additional proportion of the total variance in the dependent variable explainable by each independent variable, over and above what the other independent variables can explain, expressed relative to the proportion of variance in the dependent variable unexplainable by the other independent variables?

Yes

Partial correlation

No

Part correlation

\(r^2 \)

F test (\(F \) equals \(t^2 \))

* Biased estimator.

\(^{\dagger} \) The assumptions in note 5 on page 2 may apply.

\(^{\ddagger} \) Beta is a standardized version of b. See "standardized coefficient" in Glossary.

\(^{\S} \) The additional proportion of the total variance explainable by a set of independent variables, over and above what the other independent variables can explain, can be measured by the difference between the \(R^2 \)'s resulting from two separate multiple correlation analyses.

\(^{\ddag} \) See Glossary.
APPENDIX A
SOURCES OF FURTHER INFORMATION ABOUT STATISTICS APPEARING IN THIS GUIDE

A brief citation is given below for each statistic and statistical technique that appears in the Guide. A full entry for each cited work appears in the list of references.

- **Mode**: McNemar, 1969, p. 14
- **Distribution of relative frequencies**: Blalock, 1979, p. 31
- **Distribution of absolute frequencies**: McNemar, 1969, p. 5
- **Median**: McNemar, 1969, p. 14
- **Inter-quartile deviation**: McNemar, 1969, p. 19
- **N-tiles**: McNemar, 1969, p. 19
- **Winsorized mean**: Dixon and Massey, 1969, p. 330
- **Trimmed mean**: Andrews et al., 1972, p. 2B1
- **Hampel estimate of location**: Andrews et al., 1972, p. 2C3
- **Bluweight mean**: Mosteller and Tukey, 1977, p. 205
- **Mean**: McNemar, 1969, p. 16
- **Median**: McNemar, 1969, p. 14
- **Standard deviation**: Hays, 1973, p. 238
- **Coefficient of variation**: Blalock, 1979, p. 84
<table>
<thead>
<tr>
<th>Statistics</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>McNemar, 1969, p. 19</td>
</tr>
<tr>
<td>Skewness</td>
<td>McNemar, 1969, p. 25</td>
</tr>
<tr>
<td>Critical ratio of skewness measure</td>
<td>Snedecor and Cochran, 1967, p. 86</td>
</tr>
<tr>
<td>Table for testing skewness</td>
<td>Snedecor and Cochran, 1967, p. 552</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>McNemar, 1969, p. 25</td>
</tr>
<tr>
<td>Critical ratio of kurtosis measure</td>
<td>Snedecor and Cochran, 1967, p. 86</td>
</tr>
<tr>
<td>Table for testing kurtosis</td>
<td>Snedecor and Cochran, 1967, p. 552</td>
</tr>
<tr>
<td>Geary's criterion for kurtosis</td>
<td>D'Agostino, 1970</td>
</tr>
<tr>
<td>Distribution of relative frequencies</td>
<td>Blalock, 1979, p. 31</td>
</tr>
<tr>
<td>Distribution of absolute frequencies</td>
<td>McNemar, 1969, p. 5</td>
</tr>
<tr>
<td>N-tiles</td>
<td>McNemar, 1969, p. 19</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov one sample test</td>
<td>Siegel, 1956, p. 47</td>
</tr>
<tr>
<td>Lilliefors test</td>
<td>Conover, 1971, p. 302</td>
</tr>
<tr>
<td>Chi-square goodness-of-fit test</td>
<td>Hays, 1973, p. 725</td>
</tr>
<tr>
<td>Regression coefficient</td>
<td>Hays, 1973, pp. 623, 630</td>
</tr>
<tr>
<td>F test for regression coefficient</td>
<td>Hays, 1973, p. 647</td>
</tr>
<tr>
<td>Coefficient from curvilinear regression</td>
<td>Draper and Smith, 1966, p. 129; Hays, 1973, p. 675</td>
</tr>
<tr>
<td>F test for coefficient from curvilinear regression</td>
<td>Hays, 1973, p. 680</td>
</tr>
<tr>
<td>t test for paired observations</td>
<td>Hays, 1973, p. 424</td>
</tr>
<tr>
<td>Robinson's A</td>
<td>Robinson, 1957</td>
</tr>
<tr>
<td>Intraclass correlation coefficient</td>
<td>McNemar, 1969, p. 322</td>
</tr>
<tr>
<td>F test for Robinson's A (translate to intraclass correlation coefficient and test as below)</td>
<td>McNemar, 1969, p. 322</td>
</tr>
<tr>
<td>F test for intraclass correlation</td>
<td>McNemar, 1969, p. 322</td>
</tr>
<tr>
<td>Krippendorff's \bar{r}</td>
<td>Krippendorff, 1970, p. 143</td>
</tr>
<tr>
<td>Critical ratio of phi</td>
<td>McNemar, 1969, p. 227</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Fisher's exact test</td>
<td>Siegel, 1956, p. 96</td>
</tr>
<tr>
<td>Pearson chi-square</td>
<td>Hays, 1973, p. 735</td>
</tr>
<tr>
<td>Goodman and Kruskal's tau b</td>
<td>Blalock, 1979, p. 307</td>
</tr>
<tr>
<td>Asymmetric lambda</td>
<td>Hays, 1973, p. 747</td>
</tr>
<tr>
<td>Critical ratio of lambda</td>
<td>Goodman and Kruskal, 1983, p. 316</td>
</tr>
</tbody>
</table>

Page 10

<table>
<thead>
<tr>
<th>Scott's coefficient of agreement</th>
<th>Krippendorff, 1970, p. 142</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen's agreement coefficients (kappas)</td>
<td>Cohen, 1960; Cohen, 1968</td>
</tr>
<tr>
<td>Critical ratio for Cohen's kappas</td>
<td>Fleiss, Cohen, and Everitt, 1969</td>
</tr>
<tr>
<td>McNemar's test of symmetry</td>
<td>Bowker, 1948</td>
</tr>
<tr>
<td>Contingency coefficient</td>
<td>Hays, 1973, p. 745</td>
</tr>
<tr>
<td>Pearson chi-square</td>
<td>Hays, 1973, p. 730</td>
</tr>
<tr>
<td>Cramér's V</td>
<td>Hays, 1973, p. 745 (Hays calls it Cramér's statistic); Srikantan, 1970</td>
</tr>
<tr>
<td>Symmetric lambda</td>
<td>Hays, 1973, p. 749</td>
</tr>
</tbody>
</table>

Page 11

<table>
<thead>
<tr>
<th>Jaspé's coefficient of multserial correlation</th>
<th>Freeman, 1965, p. 131</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayer and Robinson's M_{yu}</td>
<td>Mayer and Robinson, 1977</td>
</tr>
</tbody>
</table>

Page 12

<table>
<thead>
<tr>
<th>Eta²</th>
<th>Hays, 1973, p. 683</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omega²</td>
<td>Hays, 1973, p. 484</td>
</tr>
<tr>
<td>Intraclass correlation coefficient</td>
<td>Hays, 1973, p. 535</td>
</tr>
<tr>
<td>Statistical Test</td>
<td>References</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Kelley's epsilon<sup>2</sup></td>
<td>Kelley, 1935; Glass and Haskian, 1969</td>
</tr>
<tr>
<td>F test for eta<sup>2</sup>, omega<sup>2</sup>, Kelley's epsilon<sup>2</sup>, and intraclass correlation coefficient</td>
<td>Hays, 1973, p. 471</td>
</tr>
<tr>
<td>Analysis of variance</td>
<td>Hays, 1973, p. 457</td>
</tr>
<tr>
<td>F test for analysis of variance</td>
<td>Hays, 1973, p. 471</td>
</tr>
<tr>
<td>Welch statistic</td>
<td>Brown and Forsythe, 1974a</td>
</tr>
<tr>
<td>Brown-Forsythe statistic</td>
<td>Brown and Forsythe, 1974a</td>
</tr>
<tr>
<td>t test</td>
<td>Hays, 1973, pp. 404, 410</td>
</tr>
<tr>
<td>Bartlett's test</td>
<td>Kirk, 1969, p. 61</td>
</tr>
<tr>
<td>Levene's W</td>
<td>Brown and Forsythe, 1974b</td>
</tr>
<tr>
<td>Walsh test</td>
<td>Siegel, 1956, p. 83</td>
</tr>
<tr>
<td>Randomization test for matched pairs</td>
<td>Bradley, 1968, p. 76; Siegel, 1956, p. 88</td>
</tr>
<tr>
<td>Randomization test for two independent samples</td>
<td>Bradley, 1968, p. 78; Siegel, 1956, p. 152</td>
</tr>
<tr>
<td>Randomization test for matched samples</td>
<td>Bradley, 1968, p. 80</td>
</tr>
<tr>
<td>Randomization test for independent samples</td>
<td>Bradley, 1968, p. 80</td>
</tr>
<tr>
<td>Sign test</td>
<td>Siegel, 1958, p. 68</td>
</tr>
<tr>
<td>Wilcoxon signed-rank test</td>
<td>Siegel, 1958, p. 75</td>
</tr>
<tr>
<td>Somers' d</td>
<td>Somers, 1962</td>
</tr>
<tr>
<td>Critical ratio of S</td>
<td>Kendall, 1970, p. 52</td>
</tr>
<tr>
<td>Standard error of S, assuming ties</td>
<td>Kendall, 1970, p. 55</td>
</tr>
<tr>
<td>Table of critical values of S, assuming ties</td>
<td>Harshbarger, 1971, p. 535</td>
</tr>
<tr>
<td>Median test</td>
<td>Siegel, 1956, p. 111</td>
</tr>
<tr>
<td>Mann-Whitney U</td>
<td>Siegel, 1956, p. 116</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov two sample test</td>
<td>Siegel, 1956, p. 127</td>
</tr>
<tr>
<td>Runs test</td>
<td>Siegel, 1956, p. 136</td>
</tr>
<tr>
<td>Friedman test</td>
<td>Hays, 1973, p. 785</td>
</tr>
<tr>
<td>Page 16</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Freeman's coefficient of differentiation</td>
<td>Freeman, 1965, p. 112</td>
</tr>
<tr>
<td>Kruskal-Wallis test</td>
<td>Siegel, 1956, p. 184</td>
</tr>
<tr>
<td>Median test (for more than two groups)</td>
<td>Siegel, 1956, p. 179</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 17</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance analysis</td>
<td>Snedecor and Cochran, 1967, p. 419</td>
</tr>
<tr>
<td>F test for covariance analysis</td>
<td>Snedecor and Cochran, 1967, p. 424</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 18</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Light's agreement coefficient</td>
<td>Light, 1971</td>
</tr>
<tr>
<td>Critical ratio of Light's agreement coefficient</td>
<td>Light, 1971</td>
</tr>
<tr>
<td>Kendall's coefficient of concordance (W)</td>
<td>Siegel, 1956, p. 229</td>
</tr>
<tr>
<td>Chi-square test for W</td>
<td>Siegel, 1956, p. 236</td>
</tr>
<tr>
<td>Table of critical values of s in the Kendall coefficient of concordance</td>
<td>Siegel, 1956, p. 286</td>
</tr>
<tr>
<td>Intraclass correlation coefficient</td>
<td>McNemar, 1969, p. 322</td>
</tr>
<tr>
<td>Robinson's A</td>
<td>Robinson, 1957</td>
</tr>
<tr>
<td>F test for intraclass correlation coefficient</td>
<td>McNemar, 1969, p. 322</td>
</tr>
<tr>
<td>F test for Robinson's A (translate to intraclass correlation and test as above)</td>
<td>Robinson, 1957, p. 23; McNemar, 1969, p. 322</td>
</tr>
<tr>
<td>Cochrans C</td>
<td>Siegel, 1956, p. 161</td>
</tr>
<tr>
<td>Analysis of variance with repeated measures</td>
<td>McNemar, 1969, p. 338</td>
</tr>
<tr>
<td>F test for analysis of variance with repeated measures</td>
<td>McNemar, 1969, p. 340</td>
</tr>
<tr>
<td>Multidimensional contingency table analysis</td>
<td>Statistics Department, University of Chicago, 1973 (ECTA); Landis et al., 1975 (GENCAT); Flenberg, 1977 (General)</td>
</tr>
<tr>
<td>Chi-square tests</td>
<td>Flenberg, 1977, p. 36 (Pearson and maximum likelihood)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 18</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical correlation</td>
<td>Cooley and Lohnes, 1971, p. 168; Harris, 1975, p. 132</td>
</tr>
</tbody>
</table>
Wilks' lambda
Roy's greatest root criterion
Pillai-Bartlett V
Q-type factor analysis
Clustering techniques such as single linkage, complete linkage, average linkage, K-means

Factor analysis of correlation matrix
Factor analysis of variance-covariance matrix
Confirmatory factor analysis of a standardized variance-covariance matrix
Maximum likelihood chi-square
Confirmatory factor analysis of variance-covariance matrix
Maximum likelihood chi-square
Non-metric multidimensional scaling techniques
Multidimensional contingency table analysis
Chi-square tests
Clustering techniques such as single linkage, complete linkage, average linkage, K-means

Pages 19-20

Gorsuch, 1974
Gorsuch, 1974, p. 271
Gorsuch, 1974, pp. 116, 166 (General);
Sörbom and Jöreskog, 1976 (COFAMM)
Gorsuch, 1974, pp. 118, 139;
Sörbom and Jöreskog, 1976 (COFAMM)
Gorsuch, 1974, pp. 116, 166 (General);
Sörbom and Jöreskog, 1976 (COFAMM)
Gorsuch, 1974, pp. 118, 139;
Sörbom and Jöreskog, 1976 (COFAMM)
Kruskal and Wish, 1978 (General);
Kruskal, 1964a, 1964b (MDSCAL);
Guttman, 1968; Lingoes, Roskam, and Borg, 1979 (MINISSA);
Young and Torgerson, 1976 (TORSCA);
Takane, Young, and DeLeeuw, 1977 (ALSCAL);
Kruskal, Young, and Seery, 1973 (KYST)
Statistics Department, University of Chicago, 1973 (ECTA);
Landis et al., 1976 (GENCAT);
Fienberg, 1977 (General)
Fienberg, 1977, p. 36 (Pearson and maximum likelihood)
Sneath and Sokal, 1973

Page 21

Three-mode factor analysis
Gorsuch, 1974, p. 283
Three-way non-metric multidimensional scaling techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruskal and Wish, 1978, p. 60 (General); Carroll and Chang, 1970 (INDSCAL); Harshman, 1970 (PARAFAC); Lingoes and Borg, 1976 (PINDIS); Carroll, Pruzansky, and Kruskal, 1980 (CANDELCAL); Ramsay, 1977 (MULTISCL); Takane, Young, and DeLeeuw, 1977 (ALSCAL); Sands and Young, 1980 (ALSCOMP3)</td>
<td></td>
</tr>
</tbody>
</table>

Confirmatory factor analysis of standardized variance-covariance matrices

<table>
<thead>
<tr>
<th>Technique</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum likelihood chi-square</td>
<td>Gorsuch, 1974, pp. 116, 251 (General); Sörbom and Jöreskog, 1976 (COFAMM)</td>
</tr>
</tbody>
</table>

Confirmatory factor analysis of variance-covariance matrices

<table>
<thead>
<tr>
<th>Technique</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum likelihood chi-square</td>
<td>Gorsuch, 1974, pp. 116, 251 (General); Sörbom and Jöreskog, 1976 (COFAMM)</td>
</tr>
</tbody>
</table>

Multivariate analysis of variance

<table>
<thead>
<tr>
<th>Technique</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks' lambda</td>
<td>Cooley and Lohes, 1971, p. 175; Morrison, 1976, p. 222; Harris, 1975, p. 109; Olson, 1976</td>
</tr>
<tr>
<td>Roy's greatest root criterion</td>
<td>Morrison, 1976, p. 178; Harris, 1975, p. 103, 109; Olson, 1976</td>
</tr>
<tr>
<td>Pillai-Bartlett V</td>
<td>Morrison, 1976, p. 223; Olson, 1976</td>
</tr>
<tr>
<td>Profile analysis</td>
<td>Morrison, 1976, pp. 153, 205</td>
</tr>
<tr>
<td>Wilks' lambda</td>
<td>Morrison, 1976, p. 222</td>
</tr>
<tr>
<td>Roy's greatest root criterion</td>
<td>Morrison, 1976, p. 178</td>
</tr>
<tr>
<td>Pillai-Bartlett V</td>
<td>Morrison, 1976, p. 223</td>
</tr>
</tbody>
</table>

Structural models with latent variables

<table>
<thead>
<tr>
<th>Technique</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jöreskog and Sörbom, 1978</td>
<td></td>
</tr>
<tr>
<td>Path analysis</td>
<td>Kerlinger and Pedhazur, 1973, p. 305</td>
</tr>
<tr>
<td>Canonical correlation</td>
<td>Cooley and Lohes, 1971, p. 168; Harris, 1975, p. 132</td>
</tr>
<tr>
<td>Wilks' lambda</td>
<td>Cooley and Lohnes, 1971, p. 175; Morrison, 1976, p. 222; Harris, 1975, p. 143</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Roy's greatest root criterion</td>
<td>Morrison, 1976, p. 178; Harris, 1975, pp. 103, 143</td>
</tr>
<tr>
<td>Pillai-Bartlett V</td>
<td>Morrison, 1976, p. 223</td>
</tr>
</tbody>
</table>

Page 24

Wilks' lambda	Cooley and Lohnes, 1971, p. 175; Morrison, 1976, p. 222; Harris, 1975, p. 109; Olson, 1976
Roy's greatest root criterion	Morrison, 1976, p. 178; Harris, 1975, pp. 103, 109; Olson, 1976
Pillai-Bartlett V	Morrison, 1976, p. 223; Olson, 1976
Multivariate binary segmentation techniques	Gillo, 1972 (MAID); Gillo and Shelley, 1974

Page 25

Binary segmentation techniques	Sonquist, Baker, and Morgan, 1974 (SEARCH, formerly known as AID)
Multidimensional contingency table analysis based on the cumulative logistic distribution	Bock, 1975, p. 541 (General); Bock and Yates, 1973 (MULTIQUAL)
Chi-square tests	Bock, 1975, p. 518 (Pearson and maximum likelihood)

Page 26

<p>| Analysis of variance | McNemar, 1969, p. 325 |
| F test for analysis of variance | McNemar, 1969, p. 349 |
| Multidimensional contingency table analysis | Statistics Department, University of Chicago, 1973 (ECTA); Flenberg, 1977 (General) |
| Chi-square tests | Flenberg, 1977, p. 36 (Pearson and maximum likelihood) |
| Multidimensional contingency table analysis technique allowing an unconstrained design matrix | Landis et al., 1976 (GENCAT) |</p>
<table>
<thead>
<tr>
<th>Chi-square tests</th>
<th>Flenberg, 1977, p. 36 (Pearson and maximum likelihood)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of variance using weighted least squares</td>
<td>Draper and Smith, 1966, p. 77; Rao, 1965, p. 178</td>
</tr>
</tbody>
</table>

Pages 27-28

Multiple discriminant function	Cooley and Lohnes, 1971, p. 243
Wilks' lambda	Cooley and Lohnes, 1971, p. 248
Roy's greatest root criterion	Morrison, 1976, p. 178; Harris, 1975, pp. 103, 109
Pillai-Bartlett V	Morrison, 1976, p. 223

Dummy variable regression using weighted least squares or maximum likelihood

| Multidimensional contingency table analysis | Andrews and Messenger, 1973 (MNA); Statistics Department, University of Chicago, 1973 (ECTA); Landis et al., 1976 (GENCAT); Flenberg, 1977 (General) |

<table>
<thead>
<tr>
<th>Chi-square tests</th>
<th>Flenberg, 1977, p. 36 (Pearson and maximum likelihood)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple curvilinear regression</td>
<td>Neter and Wasserman, 1974, p. 273</td>
</tr>
</tbody>
</table>

Pages 29-30

<p>| Structural models with latent variables | Jöreskog and Sörbom, 1978 |
| Path analysis | Kerlinger and Pedhazur, 1973, p. 305 |
| Multiple correlation | Hays, 1973, p. 707 |
| F test for multiple correlation | Hays, 1973, p. 709 |
| F test for regression coefficient | Kerlinger and Pedhazur, 1973, p. 66 |
| Part correlation | McNemar, 1969, p. 185 |
| F test for part correlation | McNemar, 1969, p. 321 |</p>
<table>
<thead>
<tr>
<th>Partial correlation</th>
<th>McNemar, 1969, p. 183</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher's r to Z transformation and the critical ratio of Z</td>
<td>McNemar, 1969, p. 185</td>
</tr>
<tr>
<td>F test for partial correlation</td>
<td>McNemar, 1969, p. 185</td>
</tr>
</tbody>
</table>
APPENDIX B
PROGRAMS THAT COMPUTE STATISTICS LISTED IN THE GUIDE

For many of the statistics and statistical techniques that appear in the Guide, there exist one or more programs that calculate the statistic or use the technique. The entries in this Appendix are intended to guide the reader to an appropriate program or command. In some cases, the program or command listed provides a functional approximation to the indicated statistic (for example, many programs give probability values rather than critical ratios). An asterisk following a program name means that the statistic, while not printed, can be readily obtained or, in more complicated cases, that there is documentation in the User's Manual explaining how to obtain it.

In the following table, at least one program per column is cited for each entry whenever possible. If multiple programs could be cited, only the program or programs most frequently used for the particular purpose are listed. The appropriate program, command, or procedure was determined by a review of the published documentation for each system; it is therefore possible that some errors, particularly of omission, may have been made. It is important to note the dates of the documentation (see References) as program packages are constantly being improved and augmented.
<table>
<thead>
<tr>
<th></th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>TABLES</td>
<td>HISTOGRAM ONEWAY</td>
<td>FREQUENCIES</td>
<td>UNIVARIATE</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Distribution of relative frequencies</td>
<td>TABLES</td>
<td>HISTOGRAM ONEWAY</td>
<td>FREQUENCIES</td>
<td>UNIVARIATE</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Distribution of absolute frequencies</td>
<td>TABLES</td>
<td>HISTOGRAM ONEWAY</td>
<td>FREQUENCIES</td>
<td>UNIVARIATE</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>TABLES</td>
<td>DISTRIBUTION</td>
<td>FREQUENCIES</td>
<td>UNIVARIATE</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Inter-quartile deviation</td>
<td>TABLES*</td>
<td>-</td>
<td>-</td>
<td>UNIVARIATE**</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>N-tiles</td>
<td>TABLES</td>
<td>DISTRIBUTION</td>
<td>-</td>
<td>UNIVARIATE</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Page 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winsorized mean</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P7D</td>
<td></td>
</tr>
<tr>
<td>Trimmed mean</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Hampel estimate of location</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Biweight mean</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>TABLES</td>
<td>USTATS</td>
<td>DESCRIBE</td>
<td>CONDESCRIPTIVE FREQUENCIES</td>
<td>UNIVARIATE MEANS</td>
<td>P1D</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>TABLES</td>
<td>DISTRIBUTION</td>
<td>FREQUENCIES</td>
<td>UNIVARIATE</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>TABLES</td>
<td>USTATS</td>
<td>DESCRIBE</td>
<td>CONDESCRIPTIVE FREQUENCIES</td>
<td>UNIVARIATE MEANS</td>
<td>P1D</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UNIVARIATE MEANS</td>
<td>P1D</td>
</tr>
</tbody>
</table>

** SAS prints $Q_3 - Q_1$; our reference refers to $(Q_3 - Q_1)/2$.

44
<table>
<thead>
<tr>
<th></th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>TABLES</td>
<td>DESCRIBE</td>
<td>CONDESCRIPTIVE FREQUENCIES</td>
<td>UNIVARIATE</td>
<td>P1D</td>
<td>P2D</td>
</tr>
<tr>
<td>Skewness</td>
<td>TABLES</td>
<td>DESCRIBE</td>
<td>CONDESCRIPTIVE FREQUENCIES</td>
<td>UNIVARIATE</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Critical ratio of skewness measure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Table for testing skewness</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>TABLES</td>
<td>DESCRIBE</td>
<td>CONDESCRIPTIVE FREQUENCIES</td>
<td>UNIVARIATE</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Critical ratio of kurtosis measure</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Table for testing kurtosis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Geary's criterion for kurtosis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distribution of relative frequencies</td>
<td>TABLES</td>
<td>HISTOGRAM ONEWAY</td>
<td>FREQUENCIES</td>
<td>UNIVARIATE CHART</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>Distribution of absolute frequencies</td>
<td>TABLES</td>
<td>HISTOGRAM ONEWAY</td>
<td>FREQUENCIES</td>
<td>UNIVARIATE CHART</td>
<td>P2D</td>
<td></td>
</tr>
<tr>
<td>N-tiles</td>
<td>TABLES</td>
<td>DISTRIBUTION</td>
<td>-</td>
<td>UNIVARIATE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov one sample test</td>
<td>-</td>
<td>-</td>
<td>NPAR</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lilliefors test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UNIVARIATE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chi-square goodness-of-fit test</td>
<td>-</td>
<td>-</td>
<td>NPAR</td>
<td>FREQ</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Page 6

<table>
<thead>
<tr>
<th>Regression coefficient</th>
<th>REGRESSN</th>
<th>REGRESSION</th>
<th>REGRESSION†</th>
<th>GLM</th>
<th>PIR</th>
<th>P4F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F test for regression coefficient</td>
<td>REGRESSN</td>
<td>REGRESSION</td>
<td>REGRESSION†</td>
<td>GLM</td>
<td>PIR</td>
<td>P4F</td>
</tr>
<tr>
<td>Coefficient from curvilinear regression</td>
<td>-</td>
<td>POLY</td>
<td>REGRESSION*,†</td>
<td>GLM</td>
<td>P5R</td>
<td>-</td>
</tr>
<tr>
<td>F test for coefficient from curvilinear regression</td>
<td>-</td>
<td>POLY</td>
<td>REGRESSION*,†</td>
<td>GLM</td>
<td>P5R</td>
<td>-</td>
</tr>
<tr>
<td>t test for paired observations</td>
<td>-</td>
<td>PAIR</td>
<td>T-TEST</td>
<td>MEANS‡</td>
<td>P3D</td>
<td>-</td>
</tr>
<tr>
<td>Robinson's A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intraclass correlation coefficient</td>
<td>-</td>
<td>ANOVA*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F test for Robinson's A (translate to intraclass correlation coefficient and test as below)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F test for Intraclass correlation coefficient</td>
<td>-</td>
<td>ANOVA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Krippendorff's †</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Page 7

| Pearson's product moment r | MDC | CORRELATE | PEARSON CORR | CROSSTABS | CORR | P8D | P4F |
|---------------------------|-----|-----------|---------------|------------|------|-----|
| Fisher's r to Z transformation and the critical ratio of Z | MDC | CORRELATE | PEARSON CORR | CROSSTABS | CORR | - | - |
| Bivariate r | - | - | - | - | - | - |

** Requires a sequence of MIDAS commands. See Statistical Research Laboratory, 1976, page 274.
† All capabilities in SPSS REGRESSION are also available in NEW REGRESSION.
‡ Requires that the data analyzed be the differences between the paired observations.
<table>
<thead>
<tr>
<th></th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical ratio for biserial r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical ratio for point biserial r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachoric r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Critical ratio for tetrachoric r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Critical ratio for phi</td>
<td>TABLES*</td>
<td>TWOWAY*</td>
<td>CROSSTABS*</td>
<td>FREQ*</td>
<td>P4F*</td>
<td></td>
</tr>
<tr>
<td>Somers' d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Critical ratio of S</td>
<td>TABLES</td>
<td></td>
<td></td>
<td>CROSSTABS</td>
<td>FREQ</td>
<td>P4F</td>
</tr>
<tr>
<td>Standard error of S, assuming ties</td>
<td></td>
<td></td>
<td></td>
<td>NONPAR CORR</td>
<td>FREQ</td>
<td>P4F</td>
</tr>
<tr>
<td>Table of critical values of S, assuming ties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearman's rho</td>
<td></td>
<td></td>
<td></td>
<td>RCORR</td>
<td>NONPAR CORR</td>
<td>FREQ</td>
</tr>
<tr>
<td>Critical ratio for Spearman's rho</td>
<td></td>
<td>RCORR</td>
<td>NONPAR CORR</td>
<td>FREQ</td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Table of critical values for rho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kendall's tau a</td>
<td></td>
<td></td>
<td></td>
<td>TABLES</td>
<td>NONPAR CORR</td>
<td></td>
</tr>
<tr>
<td>Standard error of S, assuming no ties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of critical values of S, assuming no ties

<table>
<thead>
<tr>
<th>Measure</th>
<th>Tables</th>
<th>RCORR</th>
<th>CROSSTABS</th>
<th>FREQ</th>
<th>CORR</th>
<th>P4F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kendall's tau b</td>
<td>TABLES</td>
<td></td>
<td></td>
<td>FREQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kendall's tau c</td>
<td>TABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodman and Kruskal's gamma</td>
<td>TABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim's d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 9

<table>
<thead>
<tr>
<th>Measure</th>
<th>Tables</th>
<th>RCORR</th>
<th>CROSSTABS</th>
<th>FREQ</th>
<th>CORR</th>
<th>P4F</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNemar's test of symmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yule's Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical ratio of phi</td>
<td>TABLES*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's exact test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson chi-square</td>
<td>TABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodman and Kruskal's $tau b$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical ratio of Goodman and Kruskal's $tau b$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetric lambda</td>
<td>TABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical ratio of lambda</td>
<td>TABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 10

<table>
<thead>
<tr>
<th>Measure</th>
<th>Tables</th>
<th>RCORR</th>
<th>CROSSTABS</th>
<th>FREQ</th>
<th>P4F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott's coefficient of agreement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAS and BMDP refer to this as Stuart's tau c.

† For two dichotomous variables, Cramér's V (in MIDAS, Cramér's phi) is equivalent to phi.
<table>
<thead>
<tr>
<th></th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen's agreement coefficients (kappas)</td>
<td>TABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical ratio for Cohen's kappas</td>
<td>TABLES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McNemar's test of symmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Contingency coefficient</td>
<td>TABLES</td>
<td>TWOWAY</td>
<td>CROSSTABS</td>
<td>FREQ</td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Pearson chi-square</td>
<td>TABLES</td>
<td>TWOWAY</td>
<td>CROSSTABS</td>
<td>FREQ</td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Cramér's V</td>
<td>TABLES</td>
<td>TWOWAY</td>
<td>CROSSTABS</td>
<td>FREQ</td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Symmetric lambda</td>
<td>TABLES</td>
<td>TWOWAY</td>
<td>CROSSTABS</td>
<td>FREQ</td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Critical ratio of symmetric lambda</td>
<td>TABLES</td>
<td></td>
<td>CROSSTABS</td>
<td>FREQ</td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Jaspen's coefficient of multserial correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's r to Z transformation and the critical ratio of Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayer and Robinson's Myu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher's r to Z transformation and the critical ratio of Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eta²</td>
<td>ANOVA</td>
<td>ANOVA</td>
<td>BREAKDOWN</td>
<td>GLM</td>
<td></td>
<td>ANOVA</td>
</tr>
<tr>
<td>MCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>OSIRIS</td>
<td>SPSS</td>
<td>M-Stat</td>
<td>GLM</td>
<td>OSIRIS</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Omega<sup>2</sup></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Intraclass correlation coefficient</td>
<td>-</td>
<td>ANOVA*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kelley's epsilon<sup>2</sup></td>
<td>ANOVA**</td>
<td>MCA**</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>F test for eta<sup>2</sup>, omega<sup>2</sup>,</td>
<td>ANOVA</td>
<td>ANOVA</td>
<td>BREAKDOWN</td>
<td>GLM</td>
<td>P7D*</td>
<td></td>
</tr>
<tr>
<td>Kelley's epsilon<sup>2</sup>, and intraclass correlation coefficient</td>
<td>ANOVA</td>
<td>ANOVA</td>
<td>ANOVA</td>
<td>GLM</td>
<td>P1V</td>
<td></td>
</tr>
<tr>
<td>Analysis of variance</td>
<td>ANOVA</td>
<td>ANOVA</td>
<td>ANOVA</td>
<td>GLM</td>
<td>P1V</td>
<td></td>
</tr>
<tr>
<td>Welch statistic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P7D</td>
<td></td>
</tr>
<tr>
<td>Brown-Forsythe statistic</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P7D</td>
<td></td>
</tr>
<tr>
<td>t test</td>
<td>-</td>
<td>-</td>
<td>T-TEST</td>
<td>T-TEST</td>
<td>P7D</td>
<td></td>
</tr>
<tr>
<td>Bartlett's test</td>
<td>-</td>
<td>ANOVA</td>
<td>ONEWAY</td>
<td>MANOVA</td>
<td>P9D</td>
<td></td>
</tr>
<tr>
<td>Levene's W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>P7D</td>
<td></td>
</tr>
<tr>
<td>Walsh test</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Randomization test for matched pairs</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Randomization test for two independent samples</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Randomization test for matched samples</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

** In OSIRIS, Kelley's epsilon² is labelled adjusted eta².
<table>
<thead>
<tr>
<th>Randomization test for independent samples</th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign test</td>
<td>TABLES*</td>
<td>RPAIR</td>
<td>NPAR</td>
<td>MRANK</td>
<td>P3S</td>
<td>-</td>
</tr>
<tr>
<td>Wilcoxon signed-rank test</td>
<td>TABLES*</td>
<td>RPAIR</td>
<td>NPAR</td>
<td>UNIVARIATE</td>
<td>P3S</td>
<td>-</td>
</tr>
<tr>
<td>Somers' d</td>
<td>-</td>
<td>-</td>
<td>CROSSTABS</td>
<td>FREQ</td>
<td>P4F</td>
<td>-</td>
</tr>
<tr>
<td>Critical ratio of S</td>
<td>TABLES</td>
<td>-</td>
<td>CROSSTABS</td>
<td>FREQ</td>
<td>P4F</td>
<td>-</td>
</tr>
<tr>
<td>Standard error of S, assuming ties</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Table of critical values of S, assuming ties</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Median test</td>
<td>-</td>
<td>TWOSAMPLE</td>
<td>NPAR</td>
<td>NPAR1WAY</td>
<td>MRANK</td>
<td>-</td>
</tr>
<tr>
<td>Mann-Whitney U</td>
<td>TABLES</td>
<td>TWOSAMPLE</td>
<td>NPAR</td>
<td>NPAR1WAY</td>
<td>MRANK</td>
<td>P3S</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov two sample test</td>
<td>-</td>
<td>TWOSAMPLE</td>
<td>NPAR</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Runs test</td>
<td>-</td>
<td>-</td>
<td>NPAR**</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Friedman test</td>
<td>-</td>
<td>-</td>
<td>RANK*</td>
<td>MRANK</td>
<td>P3S</td>
<td>-</td>
</tr>
<tr>
<td>Freeman's coefficient of differentiation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kruskal-Wallis test</td>
<td>TABLES</td>
<td>KSAMPLE</td>
<td>NPAR</td>
<td>NPAR1WAY</td>
<td>MRANK</td>
<td>P3S</td>
</tr>
<tr>
<td>Median test (for more than 2 groups)</td>
<td>-</td>
<td>KSAMPLE</td>
<td>NPAR</td>
<td>NPAR1WAY</td>
<td>MRANK</td>
<td>-</td>
</tr>
<tr>
<td>Page 16</td>
<td>MANOVA</td>
<td>COVAR</td>
<td>ANOVA MANOVA</td>
<td>GLM</td>
<td>P1V</td>
<td>P2V</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>-------</td>
<td>--------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Covariance analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F test for</td>
<td>MANOVA</td>
<td>COVAR</td>
<td>ANOVA MANOVA</td>
<td>GLM</td>
<td>P1V</td>
<td>P2V</td>
</tr>
<tr>
<td>covariance analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light's agreement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical ratio of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light's agreement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kendall's coefficient</td>
<td></td>
<td>RCORR</td>
<td></td>
<td></td>
<td></td>
<td>P3S</td>
</tr>
<tr>
<td>of concordance (W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-square test for</td>
<td></td>
<td>RCORR</td>
<td></td>
<td></td>
<td></td>
<td>P3S</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table of critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>values of s in the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kendall coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of concordance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraclass correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coefficient</td>
<td></td>
<td>ANOVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robinson's A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F test for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intraclass correlation</td>
<td></td>
<td>ANOVA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F test for Robinson's</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(translate to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intraclass correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and test as above)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cochran's Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis of variance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with repeated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** IN SPSS, this test is called Wald-Wolfowitz.
<table>
<thead>
<tr>
<th>Function</th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>F test for analysis of variance with repeated measures</td>
<td></td>
<td></td>
<td>RELIABILITY</td>
<td>GLM</td>
<td>P2V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ANOVA</td>
<td>ANOVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidimensional contingency table analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P4V</td>
<td></td>
</tr>
<tr>
<td>Chi-square tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P4F</td>
<td>ECTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GENCAT</td>
</tr>
<tr>
<td>Page 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canonical correlation</td>
<td></td>
<td></td>
<td>CANONICAL</td>
<td></td>
<td>P6M</td>
<td></td>
</tr>
<tr>
<td>Wilks' lambda</td>
<td></td>
<td></td>
<td></td>
<td>CANCORR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roy's greatest root criterion</td>
<td></td>
<td></td>
<td></td>
<td>CANCORR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai-Bartlett V</td>
<td></td>
<td></td>
<td></td>
<td>CANONICAL</td>
<td>CANCORR</td>
<td></td>
</tr>
<tr>
<td>Q-type factor analysis</td>
<td>FACTAN</td>
<td>FACTOR</td>
<td>FACTOR</td>
<td>FACTOR</td>
<td></td>
<td>P4M</td>
</tr>
<tr>
<td>Clustering techniques such as single linkage, complete linkage, average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2M</td>
<td></td>
</tr>
<tr>
<td>linkage, K-means</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PKM</td>
</tr>
<tr>
<td>Pages 19-20</td>
<td>FACTAN</td>
<td>FACTOR</td>
<td>FACTOR</td>
<td>FACTOR</td>
<td></td>
<td>P4M</td>
</tr>
<tr>
<td>Factor analysis of correlation matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor analysis of variance-covariance matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P4M</td>
</tr>
<tr>
<td>Method</td>
<td>Package(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmatory factor analysis of a standardized variance-covariance matrix</td>
<td>ROTATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum likelihood chi-square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confirmatory factor analysis of variance-covariance matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum likelihood chi-square</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-metric multidimensional scaling techniques</td>
<td>MINISSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidimensional contingency table analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-square tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clustering techniques such as single linkage, complete linkage, average linkage, K-means</td>
<td>CLUSTER CLUSTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partially non-metric multidimensional scaling techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indscal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAFAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PINDIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANDEUNC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MULTISCAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALSCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALSCLP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table may require manual data entry for clarity.
<table>
<thead>
<tr>
<th>Methodology</th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmatory factor analysis of standardized variance-covariance matrices</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FACTOR</td>
<td>-</td>
<td>COFAMM</td>
</tr>
<tr>
<td>Maximum likelihood chi-square</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FACTOR</td>
<td>-</td>
<td>COFAMM</td>
</tr>
<tr>
<td>Confirmatory factor analysis of variance-covariance matrices</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FACTOR</td>
<td>-</td>
<td>COFAMM</td>
</tr>
<tr>
<td>Maximum likelihood chi-square</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FACTOR</td>
<td>-</td>
<td>COFAMM</td>
</tr>
</tbody>
</table>

Page 22

<table>
<thead>
<tr>
<th>Methodology</th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multivariate analysis of variance</td>
<td>MANOVA</td>
<td>MANOVA</td>
<td>MANOVA</td>
<td>GLM</td>
<td>P4V</td>
<td>-</td>
</tr>
<tr>
<td>Wilks' lambda</td>
<td>MANOVA</td>
<td>-</td>
<td>MANOVA</td>
<td>GLM</td>
<td>P4V</td>
<td>-</td>
</tr>
<tr>
<td>Roy's greatest root criterion</td>
<td>-</td>
<td>MANOVA</td>
<td>MANOVA</td>
<td>GLM</td>
<td>P4V</td>
<td>-</td>
</tr>
<tr>
<td>Pillai-Bartlett V</td>
<td>-</td>
<td>-</td>
<td>MANOVA</td>
<td>GLM</td>
<td>P4V</td>
<td>-</td>
</tr>
<tr>
<td>Profile analysis</td>
<td>-</td>
<td>-</td>
<td>MANOVA</td>
<td>GLM</td>
<td>P4V</td>
<td>-</td>
</tr>
<tr>
<td>Wilks' lambda</td>
<td>-</td>
<td>-</td>
<td>MANOVA</td>
<td>GLM</td>
<td>P4V</td>
<td>-</td>
</tr>
<tr>
<td>Roy's greatest root criterion</td>
<td>-</td>
<td>-</td>
<td>MANOVA</td>
<td>GLM</td>
<td>P4V</td>
<td>-</td>
</tr>
<tr>
<td>Pillai-Bartlett V</td>
<td>-</td>
<td>-</td>
<td>MANOVA</td>
<td>GLM</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Page 23
<table>
<thead>
<tr>
<th>Path analysis</th>
<th>-</th>
<th>-</th>
<th>REGRESSION*,†</th>
<th>SYSREG</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical correlation</td>
<td>-</td>
<td>-</td>
<td>CANONICAL</td>
<td>CANCORR</td>
<td>CANCORR</td>
<td>P6M</td>
</tr>
<tr>
<td>Wilks' lambda</td>
<td>-</td>
<td>-</td>
<td>CANCORR</td>
<td>CANCORR</td>
<td>CANCORR</td>
<td>-</td>
</tr>
<tr>
<td>Roy's greatest root criterion</td>
<td>-</td>
<td>-</td>
<td>CANCORR</td>
<td>CANCORR</td>
<td>CANCORR</td>
<td>-</td>
</tr>
<tr>
<td>Pillai-Bartlett V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CANCORR</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Page 24

Multivariate analysis of variance	MANOVA	-	MANOVA	GLM ANOVA	P4V	-
Wilks' lambda	MANOVA	-	MANOVA	GLM ANOVA	P4V	-
Roy's greatest root criterion	-	-	MANOVA	GLM ANOVA	P4V	-
Pillai-Bartlett V	-	-	MANOVA	GLM ANOVA	-	-
Multivariate binary segmentation techniques	-	-	-	-	MAID	

Page 25

Binary segmentation techniques	SEARCH**	-	-	-	-
Multidimensional contingency table analysis based on the cumulative logistic distribution	-	-	-	-	MULTIQUAL
Chi-square tests	-	-	-	-	MULTIQUAL

Page 26

| Analysis of variance | - | - | ANOVA | GLM ANOVA | P1V | - |

** Formerly known as AID.
† All capabilities in SPSS REGRESSION are also available in NEW REGRESSION.
<table>
<thead>
<tr>
<th></th>
<th>OSIRIS</th>
<th>MIDAS</th>
<th>SPSS</th>
<th>SAS</th>
<th>BMDP</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>F test for analysis of variance</td>
<td></td>
<td></td>
<td>ANOVA</td>
<td>GLM</td>
<td>P1V</td>
<td></td>
</tr>
<tr>
<td>Multidimensional contingency table analysis</td>
<td></td>
<td></td>
<td>MANOVA</td>
<td>ANOVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-square tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidimensional contingency table analysis technique allowing an unconstrained design matrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-square tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis of variance using weighted least squares</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pages 27—28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple discriminant function</td>
<td></td>
<td>DISCRIMINANT</td>
<td>DISCRIMINANT</td>
<td>DISCRIM</td>
<td>P7M</td>
<td></td>
</tr>
<tr>
<td>Wilks' lambda</td>
<td></td>
<td></td>
<td></td>
<td>CANDISC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roy's greatest root criterion</td>
<td></td>
<td></td>
<td></td>
<td>CANDISC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai-Bartlett V</td>
<td></td>
<td></td>
<td></td>
<td>CANDISC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy variable regression using weighted least squares or maximum likelihood</td>
<td>DREG</td>
<td></td>
<td></td>
<td>FUNCAT</td>
<td>P3R*</td>
<td>GENCAT</td>
</tr>
<tr>
<td>Analysis Type</td>
<td>SPSS REGRESSN</td>
<td>SPSS REGRESSION</td>
<td>SPSS REGRESSION</td>
<td>GLM*</td>
<td>PIR*</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Dummy variable regression or multiple classification analysis</td>
<td>MCA</td>
<td>SELECT*</td>
<td>ANOVA</td>
<td>GLM*</td>
<td>PIR*</td>
<td></td>
</tr>
<tr>
<td>Multidimensional contingency table analysis</td>
<td>MNA</td>
<td>-</td>
<td>-</td>
<td>FUNCAT</td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Chi-square tests</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FUNCAT</td>
<td>P4F</td>
<td></td>
</tr>
<tr>
<td>Multiple curvilinear regression</td>
<td>-</td>
<td>REGRESSION</td>
<td>MANOVA</td>
<td>GLM*</td>
<td>PIR*</td>
<td></td>
</tr>
<tr>
<td>Pages 29 - 30</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural models with latent variables</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path analysis</td>
<td></td>
<td>-</td>
<td>-</td>
<td>SYSREG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>REGRESSN</td>
<td>REGRESSION</td>
<td>REGRESSION†</td>
<td>GLM*</td>
<td>PIR*</td>
<td></td>
</tr>
<tr>
<td>F test for multiple correlation</td>
<td>REGRESSN</td>
<td>REGRESSION</td>
<td>REGRESSION†</td>
<td>GLM*</td>
<td>PIR*</td>
<td></td>
</tr>
<tr>
<td>Regression coefficient</td>
<td>REGRESSN</td>
<td>REGRESSION</td>
<td>REGRESSION†</td>
<td>GLM*</td>
<td>PIR*</td>
<td></td>
</tr>
<tr>
<td>F test for regression coefficient</td>
<td>REGRESSN</td>
<td>REGRESSION</td>
<td>REGRESSION†</td>
<td>GLM*</td>
<td>PIR*</td>
<td></td>
</tr>
<tr>
<td>Part correlation</td>
<td>REGRESSN</td>
<td>REGRESSION</td>
<td>REGRESSION†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F test for part correlation</td>
<td>REGRESSN</td>
<td>REGRESSION</td>
<td>REGRESSION†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial correlation</td>
<td>PARTIALS</td>
<td>REGRESSION</td>
<td>PARTIAL CORR</td>
<td>GLM*</td>
<td>P6R</td>
<td></td>
</tr>
<tr>
<td>Fisher's r to Z transformation and the critical ratio of Z</td>
<td>REGRESSN</td>
<td>REGRESSION</td>
<td>REGRESSION†</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** The square of the part correlation is printed; it is labelled Marginal RSQD.
† All capabilities in SPSS REGRESSION are also available in NEW REGRESSION.
APPENDIX C

SOME NEW OR RARELY USED STATISTICAL TECHNIQUES

There are in the statistical literature many statistical techniques that are not included in this Guide for various reasons—they may be new and not yet well-known, or they may be old and seldom used. Some of these techniques are noted below.

1. Multivariate analysis of ordinal data.

Developing methods of multivariate analysis appropriate to the uniquely ordinal properties of ordinal scales, including constructing coefficients that measure multiple and partial association among ordinal measures, has been extensively discussed in the methodological literature of the 1970s but has proven to be a difficult problem. The issues are not yet resolved. Useful discussions of the problems, and references to other relevant literature, can be found in Blalock (1975), Kim (1975), and Mayer and Robinson (1977). From a practical standpoint, most analysts who desire to perform a multivariate analysis with ordinal measures disregard the uniquely ordinal aspects of their measures and treat them as either nominal scales or interval scales.

2. Developments in nonmetric multidimensional scaling.

Nonmetric multidimensional scaling has undergone considerable development and expansion in recent years through several distinct lines of methodological activity. One such line is yielding a variety of different algorithms for performing multidimensional mappings simultaneously for separate groups so as to generate information about how the groups differ. An early algorithm for this type of analysis, INDSCAL (Carroll and Chang, 1970), has now been complemented by several others that make fewer (or different) assumptions and that are in other ways more powerful and general. These include CANDELCN (Carroll, Puzansky, and Kruskal, 1980), PINDIS (Lingoes and Borg, 1976), MULTISCA (Ramsay, 1977), ALSCOMP3 (Sands and Young, 1980), and ALSCAL (Takane, Young, and DeLeeuw, 1977). (In the decision tree, these are referred to as three-way nonmetric multidimensional scaling techniques.)

A second line of methodological investigation has focused on the statistical significance of the obtained fits—that is, the probability that the correspondence between the multidimensional scaling solution and the observed data could have been obtained purely by a random placement of a specified number of points in a space of given dimensionality; see Isaac and Poor (1974), Langeheine (1980), MacCallum and Cornelius (1977), Spence and Graef (1974), and Spence and Ogilvie (1973).

A third line of development has pursued "confirmatory" multidimensional scaling—the attempt to fit data to an existing structure; see Borg and Lingoes (1980), and Lingoes and Borg (1976).
3. Developments in techniques for multidimensional contingency table analysis.

Multidimensional contingency table analysis has been used mainly with nominal scales, but recent developments allow its use with interval scales that have a small number of categories. Because such applications are not yet common, use of multidimensional contingency table analysis with interval scales is not included in the decision tree portion of this Guide. For further information, see Fienberg (1977) and Landis et al. (1976).

4. Polynomial regression and nonlinear regression.

As used in this Guide, curvilinear regression refers to polynomial regression, a type of regression that is linear in its parameters but not in its variables (see Draper and Smith, 1966, page 129). This is different from a type of regression that is nonlinear in its parameters, usually referred to as nonlinear regression (see Draper and Smith, 1966, p. 263).

5. Reduced variance regression techniques.

When one is attempting to predict a dependent variable using two or more predictor variables, the appropriate weights to be applied to those predictor variables can be expected to show substantial variation from one random sample to another if the correlations among the predictor variables are high. Sometimes this is referred to as “instability” of coefficients that results from high multicollinearity among the predictor variables. In recent years there has been considerable discussion in the statistical literature about ways to achieve greater stability in regression coefficients by accepting certain biases. The underlying assumption is that it may be better to use coefficients that tend to be reasonably close to the ideal (population) value but that on average tend to come out slightly different from this value, rather than a coefficient that averages to the correct value over many samples but that in any one sample may be very far off. Although theoretically interesting, we believe these developments have not yet reached the point where most social science data analysts can routinely apply them and expect to obtain better results than would be produced by more traditional approaches. Useful discussions and reviews of biased estimation techniques (including, particularly, “ridge regression”) have been provided by the following authors: Darlington (1978), Dempster, Schatzoff, and Wermuth (1977), Fennessey and d’Amico (1980), Rozeboom (1979), and Smith and Campbell (1980).

6. Exploratory data analysis.

“Exploratory data analysis” is a phrase associated with a collection of techniques proposed by Tukey (1977) that are intended to let the analyst explore a set of data while making minimal assumptions. Although based on well accepted statistical foundations, Tukey’s terminology is nontraditional and his techniques are not yet widely used. Summaries of some of his key ideas can be found in Hartwig (1979) and Leinhardt and Wasserman (1978).

7. Survival analysis.

Techniques for survival analysis (i.e., the analysis of time intervals between events) are not included in the tree portion of this Guide because, at least in the past, their application in the social sciences has largely been restricted to specific disciplines, such as demography. It is possible, however, that these techniques could profitably be applied to problems encountered in other contexts, such as studies of residential and occupational mobility, completion of education, and retirement. Techniques to handle cases with incomplete data (censored data), data involving competing risks, covariates, and interactions have been developed. Texts that describe such techniques include Kalbfleisch and Prentice (1980) and Gross and Clark (1975).

8. Information theory and the analysis of contingency tables.

A measure of uncertainty, H, derived from information
theory, can be used to measure the degree of association between two or more nominal variables. (The coefficient of association is often called U.) More generally, information theory has been used to develop methods for analyzing multidimensional contingency tables. For details, see Gokhale and Kullback (1978).

9. Sampling errors of statistics from complex designs.

An assumption often required for the use of inferential statistics is that the observations are based on a simple random sample from some population. This assumption is required because the estimates of sampling error assume that each observation is independent of all others. Often, however, stratification or clustering is used instead of a simple random procedure, and this introduces non-independence among the observations. Two programs are available in the OSIRIS IV software package that can be used to estimate the sampling error of statistics from clustered or stratified samples: &PSALMS estimates the sampling error of means, and &REPER estimates the sampling error of regression statistics.

10. The polychoric correlation coefficient for two ordinal variables.

It was pointed out in the Instructions and Comments section of this Guide that ordinarily scaled variables may be transformed to ranks, and the transformed data then treated as intervally scaled. Another approach has been suggested for the case of two ordinal variables. This approach assumes that the ordinal variables have been generated from unobserved (latent) interval-scale variables with a bivariate-normal distribution. Then the “true” product-moment correlation is estimated by a measure called the polychoric correlation coefficient (Olsson, 1979, 1980). The polychoric coefficient is a generalization to polychotomies (scales with more than two points) of the tetrachoric coefficient, which is a similar measure used in the case of two dichotomous variables (see the cautionary footnote on page 7).

11. Time series analysis.

Generally, time series analysis uses regression techniques (often something other than ordinary least squares) to analyze or predict change. Economists have been the leaders among social scientists in developing this area, but other social scientists increasingly are finding time series analysis to be relevant to their analytic problems. The Guide does not include time series analysis—partly because the decision-tree approach does not lend itself well to the analysis of data of a special type (which is the case with time series data), and partly because time series analysis has not yet become widely used by social scientists (except economists). However, because several of the major software packages now include time series programs (BMDP, MIDAS, SAS, SPSS), increased use of these analytic techniques in the coming years seems likely. Introductions to time series analysis for social scientists can be found in Glass, Willson, and Gottman (1975), Hannan and Tuma (1979), and McCleary et al. (1980).
ADDITIVE. A situation in which the best estimate of a dependent variable is obtained by simply adding together the appropriately computed effects of each of the independent variables. Additivity implies the absence of interactions. See also INTERACTION.

AGREEMENT. Agreement measures the extent to which two sets of scores (e.g., scores obtained from two raters) are identical. Agreement involves a more stringent matching of two variables than does covariation, which implicitly allows one to change the mean (by adding a constant) and/or to change the variance (by multiplying by a constant) for either or both variables before checking the match.

BIAS. The difference between the expected value of a statistic and the population value it is intended to estimate. See EXPECTED VALUE.

BIASED ESTIMATOR. A statistic whose expected value is not equal to the population value. See EXPECTED VALUE.

BIVARIATE NORMALITY. A particular form of distribution of two variables that has the traditional "bell" shape (but not all bell-shaped distributions are normal). If plotted in three-dimensional space, with the vertical axis showing the number of cases, the shape would be that of a three-dimensional bell (if the variances on both variables were equal) or a "fireman's hat" (if the variances were unequal). When perfect bivariate normality obtains, the distribution of one variable is normal for each and every value of the other variable. See also NORMAL DISTRIBUTION.

BRACKETING. The operation of combining categories or ranges of values of a variable so as to produce a small number of categories. Sometimes referred to as "collapsing" or "grouping."

CAPITALIZATION ON CHANCE. When one is searching for a maximally powerful prediction equation, chance fluctuations in a given sample act to increase the predictive power obtained; since data from another sample from the same population will show different chance fluctuations, the equation derived for one sample is likely to work less well in any other sample.

CAUSAL MODEL. An abstract quantitative representation of real-world dynamics (i.e., of the causal dependencies and other interrelationships among observed or hypothetical variables).

GLOSSARY

COMPLEX SAMPLE DESIGN. Any sample design that uses something other than simple random selection. Complex sample designs include multi-stage selection, and/or stratification, and/or clustering. For information on the calculation of sampling errors of statistics from complex designs, see note 9 in Appendix C.

COVARIATE. A variable that is used in an analysis to correct, adjust, or modify the scores on a dependent variable before those scores are related to one or more independent variables. For example, in an analysis of how demographic factors (age, sex, education, etc.) relate to wage rates, monthly earnings might first be adjusted to take account of (i.e., remove effects attributable to) number of hours worked, which in this example would be the covariate.

COVARIATION. Covariation measures the extent to which cases (e.g., persons) have the same relative positions on two variables. See also AGREEMENT.

DEPENDENT VARIABLE. A variable which the analyst is trying to explain in terms of one or more independent variables. The distinction between dependent and independent variables is typically made on theoretical grounds—in terms of a particular causal model or to test a particular hypothesis. Synonym: criterion variable.

DESIGN MATRIX. A specification, expressed in matrix format, of the particular effects and combinations of effects that are to be considered in an analysis.

DICHOTOMOUS VARIABLE. A variable that has only two categories. Gender (male/female) is an example. See also TWO-POINT SCALE.

DUMMY VARIABLE. A variable with just two categories that reflects only part of the information actually available in a more comprehensive variable. For example, the four-category variable Region (Northeast, Southeast, Central, West) could be the basis for a two-category dummy variable that would distinguish Northeast from all other regions. Dummy variables often come in sets so as to reflect all of the original information. In our example, the four-category region variable defines four dummy variables: (1) Northeast vs. all other; (2) Southeast vs. all other; (3) Central vs. all other; and (4) West vs. all other. Alternative coding procedures (which are equivalent in terms of explanatory
power but which may produce more easily interpretable estimates) are

effect coding and orthogonal coefficients.

EXPECTED VALUE. A theoretical average value of a statistic over an

infinite number of samples from the same population.

HETEROSCEDASTICITY. The absence of homogeneity of variance. See

HOMOGENEITY OF VARIANCE.

HIERARCHICAL ANALYSIS. As used on page 26 of the Guide, a hier-

archical analysis is one in which inclusion of a higher order inter-

action term implies the inclusion of all lower order terms. For example,

If the interaction of two independent variables is included in an expla-

natory model, then the main effects for both of those variables are

also included in the model.

HOMOGENEITY OF VARIANCE. A situation in which the variance on a

dependent variable is the same (homogeneous) across all levels of the

independent variables. In analysis of variance applications, several

statistics are available for testing the homogeneity assumption (see

Kirk, 1968, page 61); in regression applications, a lack of homogeneity

can be detected by examination of residuals (see Draper and Smith,

1966, page 96). In either case, a variance-stabilizing transforma-

tion may be helpful (see Kruskal, 1978, page 1052). Synonym: homoce-

dasticity. Antonym: heteroscedasticity.

HOMOSCEDASTICITY. See HOMOGENEITY OF VARIANCE.

INDEPENDENT VARIABLE. A variable used to explain a dependent

variable. Synonyms: predictor variable, explanatory variable. See also

DEPENDENT VARIABLE.

INTERACTION. A situation in which the direction and/or magnitude of

the relationship between two variables depends on (i.e., differs accord-

ing to) the value of one or more other variables. When interaction is

present, simple additive techniques are inappropriate; hence, Inter-

action is sometimes thought of as the absence of additivity. Syno-

nym: nonadditivity, conditioning effect, moderating effect, conglutina-

tory effect. See also PATTERN VARIABLE, PRODUCT VARIABLE.

INTERVAL SCALE. A scale consisting of equal-sized units (dollars,

years, etc.). On an Interval scale the distance between any two posi-

tions is of known size. Results from analytic techniques appropriate

for Interval scales will be affected by any non-linear transformation of

the scale values. See also SCALE OF MEASUREMENT.

INTERVENING VARIABLE. A variable which is postulated to be a pre-

dictor of one or more dependent variables, and simultaneously pre-

dicted by one or more independent variables. Synonym: mediating

variable.

KURTOSIS. Kurtosis indicates the extent to which a distribution is more

peaked or flat-topped than a normal distribution.

LINEAR. The form of a relationship among variables such that when any

two variables are plotted, a straight line results. A relationship is

linear if the effect on a dependent variable of a change of one unit in

an independent variable is the same for all possible such changes.

MATCHED SAMPLES. Two (or more) samples selected in such a way that

each case (e.g., person) in one sample is matched—i.e., identical

within specified limits—on one or more preselected characteristics

with a corresponding case in the other sample. One example of

matched samples is having repeated measures on the same indi-

viduals. Another example is linking husbands and wives. Matched

samples are different from independent samples, where such case-by-

case matching on selected characteristics has not been assured.

MEASURE OF ASSOCIATION. A number (a statistic) whose magnitude

indicates the degree of correspondence—i.e., strength of relation-

ship—between two variables. An example is the Pearson product-moment

correlation coefficient. Measures of association are different from sta-

tistical tests of association (e.g., Pearson chi-square, F test) whose

primary purpose is to assess the probability that the strength of a rela-

tionship is different from some preselected value (usually zero). See

also STATISTICAL MEASURE, STATISTICAL TEST.

MISSING DATA. Information that is not available for a particular case

(e.g., person) for which at least some other information is available.

This can occur for a variety of reasons, including a person's refusal or

inability to answer a question, nonapplicability of a question, etc. For

useful discussions of how to overcome problems caused by missing

data in surveys see Hertel (1976) and Kim and Curry (1977).

MULTIVARIATE NORMALITY. The form of a distribution involving more

than two variables in which the distribution of one variable is normal

for each and every combination of categories of all other variables.

See Harris (1975, page 231) for a discussion of multivariate normality.

See also NORMAL DISTRIBUTION.

NOMINAL SCALE. A classification of cases which defines their equiva-

cence and non-equivalence, but implies no quantitative relationships

or ordering among them. Analytic techniques appropriate for nomi-

nally scaled variables are not affected by any one-to-one transforma-

tion of the numbers assigned to the classes. See also SCALE OF

MEASUREMENT.

NONADDITIVE. Not additive. See ADDITIVE, INTERACTION.

NORMAL DISTRIBUTION. A particular form for the distribution of a

variable which, when plotted, produces a "bell" shaped curve—
symmetrical, rising smoothly from a small number of cases at both

extremes to a large number of cases in the middle. Not all symmetrical

bell-shaped distributions meet the definition of normality. See Hays

NORMALITY. See NORMAL DISTRIBUTION.

ORDINAL SCALE. A classification of cases into a set of ordered classes

such that each case is considered equal to, greater than, or less than

every other case. Analytic techniques appropriate for ordinally scaled

variables are not affected by any monotonic transformation of the

numbers assigned to the classes. See also SCALE OF

MEASUREMENT.
OUTLYING CASE (OUTLIER). A case (e.g., person) whose score on a variable deviates substantially from the mean (or other measure of central tendency). Such cases can have disproportionately strong effects on statistics.

PATTERN VARIABLE. A nominally scaled variable whose categories identify particular combinations (patterns) of scores on two or more other variables. For example, a party-by-gender pattern variable might be developed by classifying people into the following six categories: (1) Republican males, (2) Independent males, (3) Democratic males, (4) Republican females, (5) Independent females, (6) Democratic females. A pattern variable can be used to incorporate interaction in multivariate analysis.

PRODUCT VARIABLE. An intervally scaled variable whose scores are equal to the product obtained when the values of two other variables are multiplied together. A product variable can be used to incorporate certain types of interaction in multivariate analysis.

RANKS. The position of a particular case (e.g., person) relative to other cases on a defined scale—as in “1st place,” “2nd place,” etc. Note that when the actual values of the numbers designating the relative positions (the ranks) are used in analysis they are being treated as an interval scale, not an ordinal scale. See also INTERVAL SCALE, ORDINAL SCALE.

SCALE OF MEASUREMENT. As used in this Guide, scale of measurement refers to the nature of the assumptions one makes about the properties of a variable; in particular, whether that variable meets the definition of nominal, ordinal, or interval measurement. See also NOMINAL SCALE, ORDINAL SCALE, INTERVAL SCALE.

SKEWNESS. Skewness is a measure of lack of symmetry of a distribution.

STANDARDIZED COEFFICIENT. When an analysis is performed on variables that have been standardized so that they have variances of 1.0, the estimates that result are known as standardized coefficients; for example, a regression run on original variables produces unstandardized regression coefficients known as b's, while a regression run on standardized variables produces standardized regression coefficients known as betas. (In practice, both types of coefficients can be estimated from the original variables.) Bielock (1967), Hargens (1976), and Kim and Mueller (1978) provide useful discussions on the use of standardized coefficients.

STANDARDIZED VARIABLE. A variable that has been transformed by multiplication of all scores by a constant and/or by the addition of a constant to all scores. Often these constants are selected so that the transformed scores have a mean of zero and a variance (and standard deviation) of 1.0.

STATISTICAL INDEPENDENCE. A complete lack of covariation between variables; a lack of association between variables. When used in analysis of variance or covariance, statistical independence between the independent variables is sometimes referred to as a balanced design.

STATISTICAL MEASURE. A number (a statistic) whose size indicates the magnitude of some quantity of interest—e.g., the strength of a relationship, the amount of variation, the size of a difference, the level of income, etc. Examples include means, variances, correlation coefficients, and many others. Statistical measures are different from statistical tests. See also STATISTICAL TEST.

STATISTICAL TEST. A number (a statistic) that can be used to assess the probability that a statistical measure deviates from some preselected value (often zero) by no more than would be expected due to the operation of chance. If the cases (e.g., persons) studied were randomly selected from a larger population. Examples include Pearson chi-square, F test, t test, and many others. Statistical tests are different from statistical measures. See also STATISTICAL MEASURE.

TRANSFORMATION. A change made to the scores of all cases (e.g., persons) on a variable by the application of the same mathematical operation(s) to each score. (Common operations include addition of a constant, multiplication by a constant, taking logarithms, ranking, bracketing, etc.)

TWO-POINT SCALE. If each case is classified into one of two categories (e.g., yes/no, male/female, dead/alive), the variable is a two-point scale. For analytic purposes, two-point scales can be treated as nominal scales, ordinal scales, or interval scales.

WEIGHTED DATA. Weights are applied when one wishes to adjust the impact of cases (e.g., persons) in the analysis, e.g., to take account of the number of population units that each case represents. In sample surveys weights are most likely to be used with data derived from sample designs having different selection rates or with data having markedly different subgroup response rates.
REFERENCES

Bradley, D. R.; Bradley, T. D.; McGrath, S. G.; and Cutcomb, S. D. Type I error rate of the chi-square test of independence in R x C tables that have small expected frequencies. Psychological Bulletin 86 (1979): 1290-1297.

Guttman, L. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33 (1968): 469-506.

Krippendorff, K. Bivariate agreement coefficients for reliability of data.

