Home > Events & News > Brown Bag Schedule . Archive

PSC In The News

RSS Feed icon

Starr's findings account for some of the 19% black-white gap in federal sentencing

Frey says suburbs are aging, cities draw millennials

Pfeffer comments on Fed report that reveals 20-year decline in net worth among American families

More News

Highlights

U-M's campus climate survey results discussed in CHE story

U-M honors James Jackson's groundbreaking work on how race impacts the health of black Americans

U-M is the only public and non-coastal university on Forbes' top-10 list for billionaire production

ASA President Bonilla-Silva takes exception with Chief Justice Roberts' 'gobbledygook' jab

More Highlights

Next Brown Bag

Mon, Jan 22, 2018, noon: Narayan Sastry

Telomeres

Children's telomere length and social disadvantage

4/18/2014 feature story

Colter Mitchell and colleagues found that 9-year olds growing up in highly disadvantaged environments had shorter telomeres than their highly advantaged counterparts, with genetic sensitivity having a moderating effect.

More Information.

Colter Mitchell

Publication Information:

Mitchell, Colter, John Hobcraft, Sara McLanahan, Susan Rutherford Siegel, Arthur Berg, Jeanne Brooks-Gunn, Irwin Garfinkel, and Daniel Notterman. 2014. "Social disadvantage, genetic sensitivity, and children’s telomere length." Proceedings of the National Academy of Sciences of the United States of America, 111(16): 5944-5949. PMCID: PMC4000782.

Disadvantaged social environments are associated with adverse health outcomes. This has been attributed, in part, to chronic stress. Telomere length (TL) has been used as a biomarker of chronic stress: TL is shorter in adults in a variety of contexts, including disadvantaged social standing and depression. Using data from 40, 9-year-old boys participating in the Fragile Families and Child Wellbeing Study, we show that those who grow up in highly disadvantaged environments have shorter telomeres than boys who grow up in highly advantaged environments. We also find that the association between the social environment and TL is moderated by genetic variation within the serotonin and dopamine pathways. Boys with the highest genetic sensitivity scores had the shortest TL when exposed to disadvantaged environments and the longest TL when exposed to advantaged environments. To our knowledge, this report is the first to document a gene–social environment interaction for TL, a biomarker of stress exposure.

Feature Archive.