Home > Events & News > Brown Bag Schedule . Archive

PSC In The News

RSS Feed icon

Yang and Mahajan examine how hurricanes impact migration to the US

Patrick and colleagues analyze high-intensity drinking among adolescents

Schulenberg says MTF data show 39% of college students used marijuana in past year

More News

Highlights

Pamela Smock elected to PAA Committee on Publications

Viewing the eclipse from ISR-Thompson

Paula Fomby to succeed Jennifer Barber as Associate Director of PSC

PSC community celebrates Violet Elder's retirement from PSC

More Highlights

Next Brown Bag

Mon, Sept 11, 2017, noon:
Welcoming of Postdoctoral Fellows: Angela Bruns, Karra Greenberg, Sarah Seelye and Emily Treleaven

psc brown bag iconEnvironmental determinants of Infectious diseases: Roads and diarrheal disease

Joe Eisenberg

03/24/2014, at noon in room 6050 ISR-Thompson.

Archived video

Dr. Eisenberg studies infectious disease epidemiology with a focus on waterborne and vectorborne diseases. His broad research interests integrates theoretical work in developing disease transmission models and empirical work in designing and conducting epidemiology studies. Specifically he has been interested in the environmental determinants of infectious diseases, and currently has a project in Ecuador studying how changes in the social and natural environment, mediated by road construction, affect the epidemiology of pathogens causing diarrheal diseases. Dr. Eisenberg also has an ongoing collaboration with the World Health Organization (WHO) Water, Sanitation, and Hygiene group exploring how to integrate disease transmission models and multi-country survey data, to help inform regional and national decisions on public health policy making. Dr. Eisenberg's domestic interest has been focused on the development of a new microbial risk assessment framework that shifts the traditional approach of individual-based static models to population-based dynamic models. In coordination with the Environmental Protection Agency (EPA), this work has led him to apply these disease transmission models to assess the public health risk from exposures to microbial agents in drinking waters, recreational waters, and biosolids.


  View All