Differential equation model of carbon dioxide emission using functional linear regression

Publication Abstract

Kafle, R., Keshav Pokhrel, N. Khanal, and C. Tsokos. 2019. "Differential equation model of carbon dioxide emission using functional linear regression." Journal of Applied Statistics, 46(7): 1246-1259.

Carbon dioxide is one of the major contributors to Global Warming. In the present study, we develop a differential equation to model the carbon dioxide emission data in the atmosphere using functional linear regression approach. In the proposed method, a differential operator is defined as data smoother and we use the penalized least square fitting criteria to smooth the data. The profile error sum of squares is optimized to estimate the differential operators using functional regression. The solution of the developed differential equation estimates and predicts the rate of change of carbon dioxide in the atmosphere at a particular time. We apply the proposed model to fit the emission of carbon dioxide data in the continental United States. Numerical simulations of a number of test cases depict a satisfactory agreement with real data.

10.1080/02664763.2018.1542667

Browse | Search | Next

PSC In The News

RSS Feed icon

Mehta makes it clear why young people are leading the rise of COVID cases in Michigan: Socializing

More News

Highlights

Frey's Social Science Data Analysis Network, SSDAN wins 2020 MERLOT Sociology Classics Award

Doing COVID-19 research? These data tools can help!

More Highlights


Connect with PSC follow PSC on Twitter Like PSC on Facebook