Measurement error correction and sensitivity analysis in longitudinal dietary intervention studies using an external validation study

Archived Abstract of Former PSC Researcher

Siddique, Juned, Michael J. Daniels, Raymond J. Carroll, Trivellore Raghunathan, Elizabeth A. Stuart, and Laurence S. Freedman. 2019. "Measurement error correction and sensitivity analysis in longitudinal dietary intervention studies using an external validation study." Biometrics, 75(3): 927-937.

In lifestyle intervention trials, where the goal is to change a participant's weight or modify their eating behavior, self-reported diet is a longitudinal outcome variable that is subject to measurement error. We propose a statistical framework for correcting for measurement error in longitudinal self-reported dietary data by combining intervention data with auxiliary data from an external biomarker validation study where both self-reported and recovery biomarkers of dietary intake are available. In this setting, dietary intake measured without error in the intervention trial is missing data and multiple imputation is used to fill in the missing measurements. Since most validation studies are cross-sectional, they do not contain information on whether the nature of the measurement error changes over time or differs between treatment and control groups. We use sensitivity analyses to address the influence of these unverifiable assumptions involving the measurement error process and how they affect inferences regarding the effect of treatment. We apply our methods to self-reported sodium intake from the PREMIER study, a multi-component lifestyle intervention trial. This article is protected by copyright. All rights reserved

10.1111/biom.13044

Keywords:
24-hour dietary recall Multiple imputation recovery biomarker sodium intake

Browse | Search | Next

PSC In The News

RSS Feed icon

Shaefer comments on the Cares Act impact in negating hardship during COVID-19 pandemic

Heller comments on lasting safety benefit of youth employment programs

More News

Highlights

Dean Yang's Combatting COVID-19 in Mozambique study releases Round 1 summary report

Help Establish Standard Data Collection Protocols for COVID-19 Research

More Highlights


Connect with PSC follow PSC on Twitter Like PSC on Facebook